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ABSTRACT: There is a considerable body of evidence showing that it is the inflow 
into unemployment that drives the unemployment rate up and down and so from a policy 
point of view an important question is whether or not movements in state inflow reflect 
the impact of state-specific shocks or common shocks affecting the entire economy  This 
paper reports the results of using principal components analysis to search for a common 
cycle in time series data for the rate at which people are leaving employment and moving 
to unemployment in the six states of Australia.  It is concluded that there is a common 
cyclical component to each of the state’s separation rates but that it accounts for only a 
small part of the total variation we observe in the data set.  In addition there are large 
idiosyncratic variations especially in the case of three of the six states.  These findings 
strengthen the case for regional labour market policy in Australia.  

1. INTRODUCTION 

The aim of this paper is to examine the time series characteristics of the rate 
at which people flow into unemployment in each of the six Australian states, 
with a view to determining whether movements in state inflow over time reflect 
the impact of state-specific shocks or common shocks affecting the entire 
economy.  If the behaviour of regional inflow is largely explained by common 
‘national’ factors, it suggests that policies to reduce unemployment in the regions 
are indistinguishable from national macroeconomic policies designed to affect 
general demand and supply conditions across the economy.2  In contrast, if there 
are strong region-specific components explaining the behaviour of regional 
inflow, the case for region-specific (un)employment policies is that much 
stronger. 

As mentioned, the paper focuses on the rate at which people enter or ‘flow 
into’ unemployment.  The focus on flows (rather than ‘stocks’) relates to the 
belief that, in order to develop an understanding which will assist economic 
policy, variables such as the rate of unemployment must be looked at in their 
dynamic context.  In relation to unemployment this means looking at the flows 
between labour market states rather than on the number in each state at any 
moment in time, as these ‘stocks’ are merely the (net) outcome of the flows.  
Another way to put all this is to say that policy effects the stocks only because it 
impacts upon the flows.  So to ask questions about appropriate policy we need to 
examine the flows. 

The focus on the flow into unemployment arises because there is a large (and 
growing) body of research which supports the notion that the inflow into 

                                                           
1  I am grateful to the anonymous referees for helpful comments. 
2  In this paper "region" and “state” are used interchangeably. 
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unemployment is the key ‘driver’ of the unemployment rate (in particular its 
level, and not just its rate of change).  For example, numerous studies of 
causality indicate that inflow into unemployment Granger causes outflow from 
unemployment while outflow does not Granger cause inflow.  Dixon, Freebairn 
& Lim (2003) find this for Australia; Balakrishnan & Michelacci (2001) find the 
same for the US, Germany, France and Spain, while Burgess & Turon (2005) and 
Dixon & Mahmood (2006) find this for the United Kingdom. 

Since it is the inflow into unemployment that drives the state unemployment 
rate up and down, from a policy point of view an important question is whether 
or not movements in state inflow reflect the impact of state-specific shocks or 
common shocks affecting the entire economy. 

The paper is structured as follows.  In the next section a standard model of 
flows into and out of the unemployment pool is used to show that movements in 
the inflow rate is the key driver of movements in the unemployment rate over 
time.  In the third section the sources of the data used are explained as is the way 
in which inflow is measured.  The fourth and fifth sections are devoted to a 
discussion of the concept of common cycles and to the use of principal 
components analysis to test for the presence of a common cycle. The final 
section concludes. 

2. THE IMPORTANCE OF THE RATE AT WHICH PEOPLE FLOW 
INTO UNEMPLOYMENT 

The unemployment rate is defined as the ratio of the number unemployed (U) 
to the total labour force (LF).  Allowing for both U and LF to vary over time, the 
change in the unemployment rate (UR) will be: 
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where Δ represents a discrete change operator. 
Changes in the number unemployed in any period (ΔU) reflect the balance 

between two flows, an inflow into unemployment (IN) and an outflow from 
unemployment (OUT). Thus: 
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Given (2), equation (1) may be written as:  
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The two terms in the numerator on the RHS of (3) may be given a rather 
interesting interpretation. The last term, U(ΔLF/LF) measures the extent to which 
the number unemployed can change when there is a growing labour force and yet 
the unemployment rate remain constant.3  The first term (IN – OUT) is simply 
the balance of inflows and outflows over any period and is equal to the observed 
(i.e. the actual) change in the number unemployed over the period.  Clearly, if 
the first term in the numerator (i.e. (IN – OUT), the actual change) exceeds the 
second (i.e., U(ΔLF/LF) the change consistent with the unemployment rate 
remaining constant) the unemployment rate will rise.  Only if the first term is 
exactly equal to the second will the unemployment rate be constant.  In fact, even 
when (IN – OUT) equals zero, the unemployment rate can rise or fall depending 
on the rate of growth of the labour force.  This should not be surprising.  If the 
labour force is (say) rising over time then the number unemployed must rise at 
the same rate to keep the ratio between the two (this is the unemployment rate, 
(U/LF)) constant.  However, for the number unemployed to rise over time there 
must be a net inflow into unemployment, that is (IN – OUT) must be positive, 
not zero. 

Since the change in the labour force over a short period like a month or a 
quarter is ‘small’ and given also that the unemployment rate is itself ‘small’, it 
follows that [(U/LF) (ΔLF/LF)] will be very small both in absolute terms as well 
as relative to the other component in the equation, hence following other 
researchers we treat: 

 

( ) ( )/ IN OUT IN OUTUR U LF INR OUTR
LF LF LF
−⎛ ⎞Δ ≈ Δ = = − = −⎜ ⎟

⎝ ⎠
  

                 (4) 

where INR and OUTR are the inflow and outflow rates (that is, the absolute 
number of persons flowing in to and out of unemployment measured relative to 
the size of the labour force) respectively. 

A large body of research supports the notion that the inflow into 
unemployment is the key causal driver of the unemployment rate.  In particular, 
given that the inflow rate is exogenous,4 there will be a stable monotonic 
relationship between the unemployment rate and past inflow rates provided only 
that the outflow rate is related in a stable and predictable fashion to the 
(inherited) stock of unemployment.  This may be seen as follows. 

                                                           
3  We may see this as follows: For the unemployment rate to be constant over time we 
require the rate of growth in unemployment to equal the rate of growth in the labour force. 
That is, we require: ΔU/U = ΔLF/LF. This in turn implies that the magnitude of ΔU is 
such that it is exactly equal to the product U(ΔLF/LF).  
4  As mentioned earlier, tests for causality indicate that inflow into unemployment 
Granger causes outflow from unemployment while outflow does not Granger cause 
inflow. 



68 Robert Dixon 

 

We begin by noting that (4) implies that the unemployment rate will evolve 
over time according to the rule5 
 

( )1 1 1    t t t tUR UR INR OUTR− − −= + −                                                       (5) 

It is common to regard any flow (i.e. the number of persons per period 
moving between any two states) to be determined by the relevant transition 
probability in conjunction with the size of the relevant pool at the beginning of 
the period. Applying this idea, the flow measured in terms of numbers of persons 
per period moving out of unemployment (OUT) is equal to the product of the 
(transition) probability of any one unemployed person moving out of 
unemployment over any period (φ) and the number unemployed (U) at the 
beginning of the period. So that:6,7 
 

t tOUT Uφ= ×  where 0 1φ< <  

Dividing both sides by the size of the labour force gives an expression for the 
outflow rate (OUTR) in terms of the transition probability (φ) and the 
unemployment rate (UR): 

 

t tOUTR URφ= ×                                                                                   (6) 

This means that (5) may be written as: 
 

( )1 1    1  t t tUR INR URφ− −= + −                                                                   (7) 

At this point it will be obvious to the reader that the level of unemployment 
at any moment in time may be written in terms of the history of inflow rates 
alone.  A formal proof relies upon the familiar Koyck transformation.  It 
proceeds as follows: 

                                                           
5  While inflow and outflow rates are measured during a period, the unemployment rate 
will be measured at the beginning of the period. 
6  Things are simplified here by making the outflow rate a linear function of the 
unemployment rate.  However, the point being made in the text (that there will be a stable 
monotonic relationship between the unemployment rate and past inflow rates if the 
outflow rate is related in a stable and predictable fashion to the (inherited) stock of 
unemployment) will remain even if outflow and unemployment are allowed to be related 
in a non-linear fashion.  
7  For evidence on the existence of a stable relationship between the outflow rate and the 
unemployment rate for Australia, see Leeves (1997) and Dixon et al (2003).  Numerous 
studies for other countries also support the existence of such a relationship (a relationship 
which is implied by the ‘matching model’, amongst other theories). 
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Given (7), we may write for 1tUR − , 

( )1 2 21t t tUR INR URφ− − −= + −  

Substitution of the above into (7) gives 

( ) ( )2
1 2 21 1t t t tUR INR INR URφ φ− − −= + − + −                                           (8) 

Likewise, given (7) we can write for 2tUR −  
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Substitution of the above into (8) gives 
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If we continuously backwards substitute for the unemployment rate and take this 

further and further back in time, we will obtain 
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Given that 0<φ <1, it must be the case that as n →∞, (1-φ)n becomes negligible 
leaving the expression: 
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which is to say that with a constant transition probability (φ), the level of the 
unemployment rate at any moment in time is simply a geometric distributed lag 
function of past inflow rates. 

Since it is the inflow into unemployment that drives the state unemployment 
rate up and down, from a policy point of view the key question is whether or not 
there are common cycles in the rate of inflow.  In the next section of the paper  
the source of the data used to measure inflow is explained, while the fourth 
section of the paper examines this data to see if there are common cycles in the 
inflow rates. 
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3. THE DATA 

As the measure of the inflow into unemployment in any period definitions 
introduced by other authors are employed and use is made of what is commonly 
called ‘the separation rate’ (see Barro (1997, Ch 10) and Mankiw (1997, Ch 5) 
for example), this is the rate at which people flow from employment to 
unemployment. The separation rate is defined as: s = ETU/E where E is the 
number employed at the start of any period and ETU is the number of persons 
who were employed at the beginning of the period but who were unemployed at 
the end of the period (this is the number who ‘flowed from Employment To 
Unemployment’ during the period.) 

Australian measures of gross flows between employment and unemployment 
are published by the Australian Bureau of Statistics and are constructed from 
data collected as part of their monthly Labour Force Survey.  The data has its 
origin in the matching of responses by individuals in any month’s survey with 
responses by the same individuals in the previous month’s survey. These 
matched records are then ‘expanded up’ to yield population estimates of flows 
between various labour market states.8  Unfortunately, flows (matched records) 
data for Australian states is only available since October 1997. 

A chart of the (seasonally adjusted) separation rates over the period 1997:3 – 
2005:3 for each of the states is given in Figure 1.9  The case for an exclusively 
national stabilisation policy is strongest if regions have large common shocks 
and tend to move together.  We can see in Figure 1 that while there appear to be 
movements which the states have in common (most obviously associated with 
the slowdown in the rate of economic growth in Australia in 2000), there are also 
idiosyncratic components and so it is both worthwhile and necessary to apply a 
statistical procedure to try to identify these two components and to assess their 
relative size.  That is the task of the following section of the paper. 

                                                           
8 Detailed discussions of the gross flows data and its limitations can be found in Foster 
(1981), Borland (1996) and Dixon (2001).  A short account of the way in which the flows 
data is compiled is given in an Appendix to this paper.   
9 The separation rates used in this paper have been computed from gross flows data for the 
period 1997:10 – 2005:12 obtained from the ABS in Datacube 6291.0.55.001  Table GM1 
- labour force status and gross changes (flows) by sex, state, age.  We will only look at 
data for the six states because there are numerous missing observations in the flows data 
for the two Australian Territories. All figures refer to flows per month. I show quarterly 
averages to make it easier for the reader to see the relative magnitudes across states and 
over time. In the econometric work I will use monthly data so as to gain the greatest 
number of degrees of freedom. 
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Figure 1. Seasonally Adjusted Separation Rates by State: 1997:4 – 2005:4. 
 

4. IS THERE A COMMON CYCLE IN THE SEPARATION RATES? 

The approach followed in this paper is based on the notion that the 
identification of common or uncommon cycles provides important information 
about whether the series are driven by similar stochastic processes.10  This 
information in turn provides potentially useful insight into the strength of the 
                                                           
10  Increasingly in the macroeconomics and regional literature ‘cycles’ are defined as all 
departures from a ‘trend’ which results from the application of one or other filtering 
process to the raw data with the aid of an econometric technique.  This is the approach 
taken in this paper but it is important that the reader understand that this involves a quite 
different method of analysis to that which focuses on the dating of ‘business cycles’ based 
on turning points in graphs showing (indicators) of economic activity.  In this, older more 
descriptive approach, a cycle is thought of in terms of regular oscillations, alternating 
between below and above trend with a regular period of between 4 and 8 years.  This is a 
quite different concept of cycle to that associated with the econometric approach where 
the term ‘cycle’ can be applied to any deviation from the filtered series, no matter how 
short and how asymmetric the deviations might be. 
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case for regional as opposed to purely or solely national employment policies.  If 
common cycles are identified, it suggests that all of the regions would benefit 
from the implementation of any general, national counter-cyclical measures.  On 
the other hand, if cyclical paths of the regions are very different, it suggests that 
national counter-cyclical measures are harder to design and have a potentially 
uncertain regional impact.  In this case, we would in principle have a case for 
region-specific counter-cyclical measures either instead of, or in addition to, 
national measures. 

This section of the paper investigates the existence and size or importance of 
any common cycle using principal components analysis.  It is convenient to talk 
a little about the nature of principal components analysis before discussing in 
detail how it might be used to test for the presence of any common cycle.11   

Essentially principal components analysis is a method for identifying patterns 
of linear relationships which are present in a correlation (or co-variance) matrix.  
The method transforms the original variables into new, uncorrelated variables or 
‘components’ without partitioning the data set into dependent and independent 
variables, instead the entire data set is considered simultaneously with each 
variable being related to every other variable.  Each component is a linear 
combination of the original variables and there will be as many components are 
there are original variables in the study.  The first component is selected so as to 
account for the greatest amount of variance in the total data set, the second 
component will account for the greatest amount of the variance remaining after 
the first component is removed (a key feature of the method is that the 
components are orthogonal and the values of any two principal components will 
be uncorrelated with each other), and so on.   

The set of coefficients which connect each of the original variables with the 
components are often referred to as an ‘eigenvector’ or ‘latent vector’.  These 
coefficients are chosen so as to maximise the sum of the squared correlations of 
the component with the original variables.  For each component the sum of the 
squared values of these coefficients is referred to as an ‘eigenvalue’ or ‘latent 
root’.  It is in the nature of the method that the first component will be the linear 
combination with the largest variance and so it will have the largest eigenvalue. 

The coefficients linking each of the original variables with the components 
can be converted into correlations (or ‘factor loadings’) summarising the 
relationship between each of the components and each of the original variables.12 

                                                           
11  Only a very brief summary of principal components analysis is provided here.  
Detailed expositions may be found in Afifi and Clark (1996), Dunteman (1989),  Griffith 
and Amrhein (1997) and Taylor (1977).  Carvalho and Harvey (2005) give an example of 
the application of principal components analysis to look at common cycles in US regional 
per capita incomes while Western et al (2005) use it to characterise and measure ‘social 
capital’. 
12 The correlations will equal the value of the coefficients multiplied by the square root of 
the variances of the associated principal component – i.e. each of the elements of a 
particular latent vector are multiplied by the square root of the associated latent root or 
eigenvalues.  As a result, the elements in this matrix of correlations will be proportional to 
the corresponding elements in the matrix of eigenvalues. 
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This allows us to easily see the relative amounts of the variation in each of the 
original variables (in our case, in each state) which is ‘explained’ by the 
principal components.  These correlations or loadings will have the properties 
that:13 (i) the sum of the squared correlations for each column will equal to the 
amount of the variance explained by the associated principal component; (ii)  the 
sum of the squared correlations for each row (ie for each state) will equal unity, 
and; (iii) the relative size of each squared correlation as we read across each row 
tells us about the relative contribution of each of the components towards 
explaining the variation in the separation rate for that state. 

One advantage of using principal components analysis to investigate 
common cycles is that it is usual to assume that the common and idiosyncratic 
components are additive and uncorrelated (orthogonal).  Thus the search for a 
common cycle becomes a search for an (orthogonal) principal component which 
exhibits the features of a cycle which the states have in common.14  In addition, it 
may be that we can account for the groupings found in the data with reference to 
explanatory variables involving spatial constructs. It is argued later in this paper 
that the sub-sets identified by the principal components method are indeed 
related to distances between the states measured in economic space (specifically, 
a measure of the extent to which their industrial structure differs from each 
other). 

What is meant by a ‘common cycle’ and how can the definition be made 
operational in this context?  In the specific context of principal components 
analysis it is proposed that a common cycle exists if the component with the 
largest variance (the first principal component) has loadings for all states which 
are statistically significant and are of the same (positive) sign.  It is also desirable 
for this common cycle component to explain a statistically significant proportion 
of the total variation present in the data set and (desirably) that it also accounts 
for a ‘large’ portion of the movement over time in each state’s separation rate. 

Table 1 shows the eigenvectors and eigenvalues (the software package used 
is EViews 5.1) for the separation rates for the six states over the period 1997:10-
2005:12.  Although there are no particularly strong trends in the data, to avoid 
potentially spurious correlation the series is analysed with the Hoderick-Prescott 
trend removed.15  In practice the de-trended series (which are depicted in Figure 
2) for most states is little different to the raw series as depicted in Figure 1 and 
the results from applying principal components analysis to the de-trended series 

                                                           
13 To aid interpretation all variables are standardised.  This is achieved by dividing each 
variable by its standard deviation.  Another way to put this is to say that the principal 
components analysis is applied to the correlation matrix rather than the co-variance 
matrix. 
14 It is usual to refer to shocks which affect all regions simultaneously. 
15 All of the series which remain are I(0) using the ADF and Phillips-Peron tests.  An 
alternative to de-trending would be to first-difference the data. The results obtained from 
applying principal components analysis to the de-trended series is essentially the same as 
those found if it is applied to the first-differenced series except that the common cycle 
component (the contribution of the first component) is a smaller proportion of the total 
variance in the case of first-differenced data. 
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is essentially the same as those found if it is applied to the original series. 
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Figure 2. De-trended Separation Rates by State: 1997:4 – 2005:4. 
 
 
 
Table 1. Principal Components of State Separation Rates 
 

 Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 
Eigenvectors:       
NSW 0.475 0.192 -0.285 -0.360 -0.707 0.164 
VIC 0.528 -0.390 -0.029 -0.098 0.139 -0.734 
QLD 0.272 0.238 0.750 0.455 -0.305 -0.079 
SA 0.500 -0.435 0.186 -0.051 0.319 0.650 
WA 0.274 0.133 -0.565 0.761 0.075 0.062 
TAS 0.313 0.740 0.028 -0.270 0.529 -0.034 
Eigenvalue 1.731 1.028 0.983 0.919 0.713 0.626 
Variance Prop. 0.289 0.171 0.164 0.153 0.119 0.104 
Cumulative 
Prop. 

0.289 0.460 0.624 0.777 0.896 1.000 
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If we scan down the coefficients which make up the first eigenvector (these 
are in the column headed Component 1 in Table 1) we notice that they are all the 
same (positive) sign and that the first eigenvalue (this is given near the foot of 
the table) is 1.731.  Now, if the original variables were completely uncorrelated, 
each component would be expected to explain the same percentage of the total 
variance namely, 100 divided by the number of original variables (the value of 
this is 16.7 in our case as we have data for six states).16  Another way to put this 
is to say that the total variance of the system (and thus the sum of the latent roots 
or eigenvalues) will always be equal to the number of original variables17 (6 in 
our case) and so if there were no cross-correlations each component could be 
expected to have a latent root or eigenvalue of 1.  It is possible to test whether 
the value arrived at in our study differs in any statistically significant way from 
the value we would observe if all of the original variables (state separation rates) 
were completely uncorrelated.  In particular, we can test whether or not the 
eigenvalue of 1.731 differs to a statistically significant extent from 1.  Griffith 
and Amrhein (1997, p 168) report the test procedure.18  Applying the test it is 
found that the eigenvalue of 1.731 is significantly different from 1 at the 1 
percent level.  

As an aid to interpretation, Table 2 shows the matrix of correlation 
coefficients (i.e. the factor loadings) implied by the coefficients which make up 
the eigenvectors reported in Table 1.  For the sample size we are working with 
(99 observations on each variable) a correlation coefficient must be greater than 
0.198 to be regarded as significantly different from zero at the 5 percent level 
and greater than 0.258 to be regarded as significantly different from zero at the 1 
percent level.19  All of the correlation coefficients linking the state separation 
rates with Component 1 are well above 0.258.20  

To assess how much of the movement over time in each state’s separation 
rate can be accounted for by the common cycle (the first principal component) it 
is necessary to compute the squares of the correlation coefficients given in Table 
2.  These are given in Table 3.  As mentioned above it is in the nature of 
principal components analysis (using standardised variables) that the sum of the 
squared correlations for each column will equal to the amount of the variance 
explained by the associated principal component (we can see this by comparing 
the column sums in Table 3 with the eigenvalues reported at the foot of Table 1).  
In addition, the relative size of each element as we scan across the squared 
                                                           
16 The first component accounts for 28.9 percent of the total variance in the original data 
set. If quarterly data is used the first component accounts for 34.8 percent of the total 
variance. 
17 The reader should note that we are working with standardised variables. 
18 The test statistic is ( ) ( )( )1 2z nλ λ= − where λ is the eigenvalue and n is the 

sample size. 
19  The test statistic is ( ) ( )2

2 1t r n r= − − where n is the sample size and r is 

the sample correlation coefficient.   
20  This is also the case if quarterly data is used. 
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correlations in each row of Table 3 tells us about the relative contribution of each 
of the components towards explaining the variation in the separation rate for that 
state.  Scanning across the rows of Table 3 we see that in no state does the 
common factor account for more than ½ of the variation in the separation rate in 
that state and for three states (Queensland, Western Australia and Tasmania) it 
accounts for less than 1/5 of the state variation in the separation rate. 
 
Table 2. Correlations of Each Variable with the Principal Components 
(Loadings) 
 

 Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 
       

NSW 0.624 0.195 -0.283 -0.345 -0.597 0.130 
VIC 0.695 -0.396 -0.029 -0.093 0.117 -0.581 
QLD 0.357 0.241 0.744 0.436 -0.258 -0.063 
SA 0.658 -0.441 0.184 -0.048 0.269 0.514 
WA 0.360 0.135 -0.561 0.729 0.064 0.049 
TAS 0.411 0.750 0.028 -0.259 0.446 -0.027 
 
 
Table 3. Squares of Correlation Coefficients given in Table 2 
 
 Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 SUM 
NSW 0.390 0.038 0.080 0.119 0.357 0.017 1.000 
VIC 0.482 0.157 0.001 0.009 0.014 0.338 1.000 
QLD 0.128 0.058 0.554 0.191 0.067 0.004 1.000 
SA 0.432 0.194 0.034 0.002 0.072 0.265 1.000 
WA 0.130 0.018 0.314 0.532 0.004 0.002 1.000 
TAS 0.169 0.563 0.001 0.067 0.199 0.001 1.000 
Sum 1.731 1.028 0.983 0.919 0.713 0.626 6.000 
 

It seems reasonable therefore to conclude that there is a common cyclical 
component to each of the state’s separation rates but it appears to account for 
only a small part of the total variation we observe in each state’s separation rate 
over time. In particular, there are large idiosyncratic variations, especially in the 
case of Queensland, Western Australia and Tasmania. 

5. THE POSSIBLE ROLE OF INDUSTRY STRUCTURE 

Looking at Table 2 we see that the highest loadings on the common cycle 
component (the first component) are for New South Wales, Victoria and South 
Australia (these are the three states where employment in manufacturing industry 
makes up a relatively high share of total employment) while the lowest loadings 
are for Tasmania, Western Australia and Queensland.  It is of interest to ask if 
there is any relationship between the results of the principal components analysis 
and measures of similarity in industry structure across the states.  
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Given the focus of this paper the most useful calculations to make involve the 
pair-wise comparisons of structure across the regions.  A common measure of 
similarity or dissimilarity is the coefficient of regional specialisation:21 

( ) ( )1 2AB iA A iB B
i

CRS X X X X⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑  

where the amount of a particular activity in region A is XiA, the amount of the 
same activity in region B is XiB,, the sum of all activity in region A is XA, and the 
sum of all activity in region B is XB. 

If the value of the CRS is 0 it indicates that the pattern of activities in region 
A is the same as that for region B and so there is no (relative) specialisation.  The 
other extreme would be where region A specialises in only one activity and 
region B has no involvement in that activity in which case the CRS will have a 
value of 1.  In addition, the CRS has a very simple and intuitively appealing 
interpretation.  Its value is equal to the proportion of the regional activity (eg the 
proportion of state employment) which would have to be ‘reallocated’ or ‘move’ 
in order for the two regions to have the same pattern of activity. 

The CRS, which has a long history in the literature in regional studies and 
economic geography, is a related to a measure introduced by Paul Krugman.22   
The Krugman index is calculated as:  

( ) ( )AB iA A iB B
i

KI X X X X= −∑  

Obviously there is no point computing both the Krugman index and the CRS.  
Given its history, and the ease with which the CRS may be interpreted, this paper 
employs the latter.  

Table 4 reports calculations of ‘pair-wise’ coefficient of regional 
specialisation which compare each state’s industrial structure against each other 
state.  The Coefficients of Regional Specialisation are for employment by 
industry and state for 2005.23   

If we look for the lowest numbers for each state in Table 4 (the reader will 
recall that numbers closer to zero indicate greater similarity) we see that Victoria 
and New South Wales are most alike in their industrial structure and that South 
Australia is more like Victoria than any other state.  Queensland and Western 
Australia are more like each other than they are like any other state (mining is 
concentrated in QLD and WA) while Tasmania, although it is more like South 
Australia than any other state, shows the greatest dissimilarity of all the states.  

                                                           
21 For the history of the CRS and related measures see Thirlwall and Harris (1967). 
22 See Krugman (1991, p 75f)  and Krugman (1993, p 250f).  Notice that Krugman does 
not ‘halve the sum’ unlike the CRS measure.  Other than that it is identical. 
23 The data is taken from the Australian Bureau of Statistics Labour Force Statistics in DX 
Database Tables LQE1-209 and 909 and refers to the number of employed persons by 
ANZIC industry (the data is at the 3-digit level where all employees are classified as 
belonging to one or other of 53 industries). 
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Table 4. Coefficients of Regional Specialisation 
 

 NSW VIC QLD SA WA TAS 
NSW 0.000      
VIC 0.065 0.000     
QLD 0.089 0.105 0.000    
SA 0.110 0.086 0.100 0.000   
WA 0.106 0.108 0.081 0.095 0.000  
TAS 0.144 0.133 0.122 0.106 0.136 0.000 

 
These patterns are rather like those found in the loadings on the first 

component (as given in the first column of Table 2).  The highest loadings were 
for New South Wales, Victoria and South Australia (with loadings of 0.62, .69 
and .66 respectively) there was then a gap with the next highest loading being for 
Tasmania (with a loading of 0.41) and then another gap with the lowest loadings 
being for Queensland and Western Australia (both with loadings of 0.36).  It 
would seem then that there may be a connection between cyclical behaviour and 
industrial structure.  However, given that we have such a small number of 
regions to work with, this conclusion while it is suggestive and consistent with 
prior expectations, should be regarded as tentative, at best.  Clearly, much more 
work could be done attempting to provide a deeper interpretation of each of the 
components and to explain why each one includes some states and not others.  
This task goes well beyond the scope of this paper which has a more limited aim, 
namely the identification of a ‘national’ common cycle. 

6. CONCLUSIONS 

This paper has looked at the behaviour of separation rates over time in the six 
states of Australia.  It was concluded that there is a common cyclical component 
to each of the state’s separation rates but that it accounts for only a small part of 
the total variation we observe in the data set.  In addition there are large 
idiosyncratic variations, especially in the case of Queensland, Western Australia 
and Tasmania.  A number of researchers including Dixon and Shepherd (2001), 
Groenewold & Hagger (2003) and Smyth (2003) have found that there are 
considerable differences in the time series properties of the level of 
unemployment across Australian states.  The results reported in this paper are not 
only consistent with those findings but also suggest that the explanation lies in 
the different time series behaviour of the rate at which workers flow from 
employment to unemployment and that this in turn may be connected to industry 
structure.  These findings strengthen the case for regional policy in Australia.   
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APPENDIX: THE AUSTRALIAN BUREAU OF STATISTICS LABOUR 
FORCE SURVEY AND GROSS FLOWS (MATCHED RECORDS) 
DATA 

The empirical work in this paper is based on information obtained from those 
persons included in the Labour Force Survey conducted by the Australian 
Bureau of Statistics and whose responses (records) can be matched across 
successive months.24  The Labour Force Survey (LFS) is a component of the 
Monthly Population Survey which is based on a multi-stage area sample of 
private dwellings (currently about 30,000 houses, flats, etc.) and a (much) 
smaller number of non-private dwellings (hotels, motels, etc.).  (Non-private 
dwellings make up about 3 percent of the total LFS sample.)  Households 
selected for the LFS are interviewed each month of eight months, with one-
eighth of the sample being replaced each month. In the interviews an attempt is 
made (inter alia) to establish whether each person is in or out of labour force and, 
if in, whether employed or unemployed.  To derive labour force estimates for the 
‘population’, expansion factors (weights) are applied to the sample responses.  
Weighting ensures that LFS estimates conform to the benchmark distribution of 
the population by age, gender and geographic area.  Whilst the estimates for 
‘stocks’ (such as the number unemployed, the number in the labour force etc) are 
adjusted for any under-enumeration and non-response, the Gross Flows estimates 
are not.  

Data on gross flows between months is based on the matched sample - that is, 
persons surveyed in a given month whose responses in that month can be 
matched with responses in the previous month.  The matched sample differs 
from the total sample for three reasons: the exclusion of respondents in non-
private dwellings, sample rotation and ‘non-response’.  For the LFS, private 
dwellings (such as houses and flats) and non-private dwellings (such as hotels 
and motels, boarding houses and short-term caravan parks, hospitals and homes, 
educational colleges and aboriginal settlements) are separately identified and 
sampled.  The transient nature of many of the occupancies and the procedures 
used to select persons in non-private dwellings preclude the possibility of 
matching any of them who may be included in successive surveys.  Indeed, no 
attempt is made to match these responses.  However in relation to private 
dwellings, even though there is sample rotation,25 a high proportion of the 

                                                           
24  Extensive discussion of the source of the data and the method used by the ABS to 
translate sample data into ‘population equivalents’ may be found in Dixon (2001) and in 
the references cited therein.  Much of what follows is taken from that article or from the 
ABS publication Labour Statistics: Concepts, Sources and Methods, ABS Catalogue 
Number  6102.0.55.001, Ch 19. 
25  As it is not reasonable to retain the same respondents in the survey for a long period of 
time, a proportion of the private dwellings in the sample are replaced each month.  This 
procedure is known as sample rotation.  Since the monthly LFS commenced in 1978, 
dwellings have been retained in the survey for eight consecutive months so that about 
one-eighth of the sample has been replaced each month.  
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dwellings selected in one survey remains in the sample for the following survey 
and the response rate in the survey is quite high.  This means that it is possible to 
match the characteristics of most of the persons in those dwellings from one 
month to the next, to record any changes that occur, and hence to produce 
estimates of flows between the different categories of the population and labour 
force.  Overall, those whose records can be matched represent about 80 percent 
of all people in the survey and these records represent around 93 percent of the 
population.26 Although this is less than 100 percent, key indices such as the 
unemployment rate and the participation rate calculated for the matched sample 
are highly correlated both over time and across states with the same indices for 
the whole population. 

                                                           
26 This is because the members of the ‘missing’ rotation group (1/8 of the total sample) 
will have characteristics pretty much identical to those who have remained in the survey 
across successive months. If we expand the 80 percent to allow for this we have a figure 
of around 93% of the total sample.  This is less than 100 percent due to non-response and 
the fact that some members of the population reside in non-private dwellings.  See Dixon 
(2001) for further discussion. 


