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ABSTRACT To the extent to which economic analyses of the regional impacts of
=conomic change rely on national input-output data to represent the interrelationships between
ndustry sectors, multiplier calculations are likely to involve substantial overestimation of the
Snal effect. This is because national data contain no information on leakages from a region,
sther than the lower bound implied by national imports. Region-specific adjustments to
nationally constructed input-output coefficients are clearly crucial, but procedures for
rzallocating coefficients from the inter-industry table to regional “imports™ are data intensive,
“me consuming and prone to contamination by ad hoc reallocation assumptions. In this paper
= structured approach to the integration of regional information with national input-output
iata is proposed. The approach is based on regional sampling followed by econometric
sstimation of regional input-output tables using a restricted estimator which imposes
:=chnological constraints implied by the national input-output matrix. The approach allows
various additional assumptions, such as the extent to which a region is isolated and the extent
= which a region may be viewed as a microcosm of the economy, as well as other region and
ndustry-specific information, to be imposed in the estimation. The approach can be
mplemented with a minimal amount of regional sampling (for example, with sample
nformation on regional sourcing of one input only), but lends itself to much more extensive
=sz of regional sample information in a structured context.

1. INTRODUCTION

The need for regional analysis of the effects of economic change is being
mcreasingly recognised. Whether influences on the regional economy come through
zovernment intervention or business location decisions, it is still the case that the
-onsequences for the region are often poorly understood because of a lack of
zppropriate information on business interrelationships at the regional level.
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#zllington, New Zealand December 8-12, 1997. I am particularly indebted to conference
-articipants, and especially to Annette Barbetti, Keiran Donaghy, Takao Fukuchi, Geoffrey
=swings, Gennadi Kazakevitch, Tom Murphy, John Madden, Moss Madden, John Roy, Greg
% zlker and Guy West for a very wide range of comments, criticism and encouragement.
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Many economic analyses of regional impacts of economic change rely o=
national input-output data to represent the interrelationships between indus=:
sectors. While the overall size of industry sectors can be scaled down from nationz
figures to regional levels prior to this type of analysis, it remains the case that the vse
of nationally constructed input-output relationships is likely seriously ==
overestimate the regional impact of economic change. This is because the nationz
input-output coefficients - and consequently, implied multiplier effects - treat on’s
national imports as leakage, not “imports” from various regions within the nationz
economy. Consequently, many interactions occur throughout the national economy
which contribute to higher multiplier effects nationally. However, at a regional leve:
these interactions can “leak” from the region quite early in the interactive chain anz
only with lower probability, and lower impact, return at subsequent points in the
chain.

While this problem is obvious, it is difficult at a practical level to do much abews
it because of the enormous costs of collecting specific input-output information =z
the regional level. Furthermore, where such information can be collected, it ofte=
will not be consistent with the national data in terms of sectoral classifications of
interest. Additionally, since interactions with the rest of the economy are cleari:
going to be important, one cannot proceed with a regional input-output analysis. =
any event, without dealing with the linkages with the rest of the economy. Thus,
there is no escaping the need to link regional modelling with the analytical models
and sectoral categories available at a national level.

The purpose of this paper is to propose a methodology for the integration of
regional input-output information with national-level input-output models which
recognises the role of both national and regional data. The approach incorporates the
various types of information to be combined in a structured manner which makes
optimal use of all the information in a statistical sense, which allows for continual
updating and which provides econometric measures of reliability.

2. THE RELATIONSHIP BETWEEN NATIONAL AND REGIONAL
INPUT-OUTPUT STRUCTURES

To fix ideas, suppose that a national input-output table, 4, is available. Think of
this as a square commodity by commodity table (of size k x k, say), with each
commodity representing the principal product of a nationally defined industry or
sector.

Let frepresent the vector of final demands for commodities at the national level,
at the same level of disaggregation of commodities as in the input-output matrix, 4.
Let g represent the associated vector of industry total output levels. The total
industry output level consists of output for intermediate use by other industries
together with sales to final demand. This is typically represented as

g =Aq+f (D

from which the reduced form relationship linking industry outputs to final demand
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is
q=U-4)7"f (2)

Now consider the case where the focus of attention is on a particular region.
Denote this region as Region 1, and let the rest of the economy be denoted Region
2. Let the economy’s final demand be disaggregated into final demand for the
product of Region 1, f, , and that for the rest of the economy, £, , and let total industry
output be likewise disaggregated. We have f = f, +f,, ¢ = ¢, +¢, and the
interrelationships imply

9, n A9, 1
= + 3)
9, 21 42|92 2

where 4, represents pure intra regional input-output flows (inputs per unit of
output) in Region 1, 4., represents the rest of the economy’s internal flows, and 4,
and 4,, allow for interrelationships between Region 1 and the rest of the economy.
The disaggregation of the final demand vector should be understood as related to the
location of sale of the final product, not to the location of the final demanders. In the
two regional economy there are in principle two final demands for each product.

Assume that Region 1 has access to the same technology as is available
nationally, and that the region imports from abroad at the same percentage as is true
nationally. These may be termed the “common technology” assumption and the
“common external links” assumption respectively. While these assumptions are not
crucial, they do allow the exposition to focus more on regional sourcing types of
assumptions. The combined effect of these two assumptions is that the technology
matrix 4 is still relevant to the domestic input requirements for industries in both
Regions 1 and 2, but it needs to be disaggregated into intra-regional and inter-
regional blocks in both cases. Specifically, the common technology and common
external links assumptions imply both

A=4,+4, and 4 = 4, +4,, 4)

However, what these assumptions do not address is the 4,,, 4,, split on the one
nand and the A4,,, 4,, split on the other. Various options are considered in
subsequent sections.

To highlight the relevant issues, suppose that particular disaggregations (4) are
chosen, and define vectors of outputs and final demands together with a
disaggregated input-output matrix which keep separate account of all activities in
noth Region 1 and Region 2. Letting

2
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the input-output identity for this “two region” economy can be represented as

U =ARqR +fR 3

where the subscript R denotes the “regionalised” variant of the national input-outp=
relationships. This allows regional effects to be calculated from the relationship

gy = U-4)° 1, (6

or, in partitioned form (and concentrating on Region 1), 2

9, = [(U-4,) —Alz(I_Azz)-lAn]_lfl
+ _An)_lAu[(I —4y,) —4,,U _Au)-lAu]‘lfz

What equation (7) makes clear is that the level of activity in Region 1 depends upen
final demand both within and outside its own boundaries. The extent of this
dependence is related not only to its own intra-regional input-output relationships
(4,,) and its links to the wider economy through purchasing requirements (4,,), but
also, generally, on interrelationships within the wider economy (4,,) and links back
from there to Region 1 (4,,). These influences are clearly brought out in equation
(7), and it is evident that modelling decisions on the disaggregation of A4 into
A,, + A4, onthe one hand and into 4, + 4,, on the other will affect the predicted
outcomes of the model.

At least two problems can therefore be identified in this type of regional input-
output modelling which extend beyond the usual problems present in any application
of the Leontief multiplier.

The problems are, firstly, that without specific information on a region there is
no guidance for choice of the required splits of the 4 matrix and, second, any split
that is chosen is a representation of extant purchasing policy, which may be
ephemeral, is not technology based, and in any event will need to be continually
reviewed, especially in the context of a comparative static exercise which sees some
new source of supply become available within a region. That is, problems of input-
output coefficient instability, which arise in any application of input-output
techniques due to technological change, relative input price changes, and scale
effects, are extended to a very high degree indeed by the regional split of the input-
output coefficient matrix based on locational sources of supply.

Of course, the problems identified above may be present in principle but be of
little empirical importance in an application of regional input-output modelling. The
importance of accurately splitting the national input-output matrix into its constituent
regional subcomponents may well depend upon the type of analysis to be undertaken

2

Equation (7) follows from the top block (first £ rows) of the 2k system (6) after partitioned
inversion of (7 - Ag).
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with the regionalised model. Since the seminal work of Miyazawa (1976) on the
concept of internal and external multipliers in interregional analysis, there has been
extensive discussion of the importance of interregional trade effects in these types
of models. Views in the literature appear to be mixed. Research on the concept of the
fundamental economic structure of an economy and the “inverse importance” of
direct coefficients suggests that the importance of accurately constructing
interregional flow coefficients will depend both upon the nature of the regions and
upon the purpose of the analysis. For some purposes it may be possible to largely
ignore interregional feedbacks (Gillen and Guccione (1980)) while for other
purposes a careful accounting of the differences in national and regional
characteristics seems to be amply repaid (Harrigan, McGilvray and McNicoll, 1980).

Although there has been no shortage of clever suggestions for avoiding the more
expensive, survey-based, approaches to generating input-output coefficients for
multi-regional models, there seems to be also an accumulating body of evidence
which cautions against extreme assumptions in place of real data. Issues associated
with this survey versus non-survey debate are covered, for example, in Hewings

1974), Miernyk (1976), Hewings (1977), Hewings and Janson (1980) and West

1981). The consensus of this line of research seems to be that a cautious
compromise ought to be possible. However, there remains the difficulty of
determining a priori where the acceptable point of compromise will be. For example,
recent results such as those based on the findings of Israilevich, Hewings, Schindler
and Mahidhara (1996) suggest that there will certainly be occasions where the choice
of input-output subcomponent tables within regional models will be crucial to the
oredictions of the model. Taking this view seriously, the current paper investigates
an approach to using detailed input-output data at the regional level in an integrated
fashion with national data. In a sense, it is an alternative to a line of research which
aas concentrated upon the use of assumptions which allow the development of
simplifying formulae aimed at avoiding the need for construction of a full regional
miput-output table. Drake (1976) and Katz and Burford (1985) are examples of this
'zss data intensive tradition. There is a good deal of evidence from a variety of
research results, however, that analysis based on a higher proportion of assumptions
0 “hard” data is prone to greater error.

In proposing a methodology which allows statistical estimation of key
components of the regional input-output matrix, the approach of this paper offers the
sotential to contribute to the literature on measuring the accuracy of input-output
models, an area of investigation which has received a good deal of attention from a
variety of perspectives. Jensen (1980), in introducing the concepts of holistic and
artitive accuracy, points out methodological issues with the concept of accuracy,
sspecially in isolation from the intended use of a model, and emphasises the
Zifficulties, cost ineffectiveness and possibly the elusiveness in attempting to achieve
sartitive accuracy in the context of regional input-output modelling. Nevertheless,
zlthough this caveat needs to be kept in mind, many innovative approaches to
Tacking the inverse importance of coefficients and/or to describing aspects of direct
zoefficient structure which may have particular relationships to the multiplier
=ructure of an economy continue to be developed. An example of an approach which
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has potential for application to the interregional trade issue is the “fields of
influence” technique of Sonis and Hewings (1989). This approach generalises the
tracing of the inverse importance of individual coefficients to groups of coefficients
and as such could be applied to the determination of the importance of the ofi-
diagonal interregional trade blocks of a multi-regional model.

The approach of Sonis and Hewings is deterministic. West (1986), on the other
hand, demonstrates the value of a stochastic approach, provided that the distribution
of the direct coefficients is known. Because the current proposal involves a method
of estimation of direct coefficients econometrically, standard errors can be obtainec
as a by-product of the approach. Use of statistically calculated standard errors for
development of measures of model accuracy is an area of potential future application
of the approach of the current paper which points to the prospect of a reconciliation
of many of the views and approaches which have been suggested in the literature.

A related proposal has been suggested and implemented by Gerking (19762
1976b). Gerking’s approach assumed that individual input-output coefficients were
regression coefficients from separate simple regression models in which an errors
in variables problem necessitated use of an instrumental variables estimation
technique. By contrast, the current proposal aims to estimate each row of the input-
output table as a set of regression coefficients from a multiple regression model in
which each row of the absorption matrix acts as a set of observations on a particular
dependent variable (an input) and each column of the make matrix acts as a set of
observations on one of a number of explanators of what is essentially taken to be an
“average” firm’s input demand function for intermediate inputs (explained.
essentially, by the variety of outputs of the “average” firm). In addition, there are
cross-equation (cross-input) restrictions, the most simple of which are adding up
accounting identities which hold automatically under the technique employed. The
approach generalises to encompass more complex within and across equation
restrictions.

The remainder of the paper is set out as follows. Section 3 discusses a top down
approach to construction of the various sub-matrices in (7). Section 4 then outlines
the econometrically based bottom up approach. Section 5 integrates the top down
and bottom up approaches through the use of a restricted seemingly unrelated
regression estimator. It also exhibits a useful updating formula which may be applied
as new sample data become available.

3. REGIONAL MODEL CONSTRUCTION: WORKING FROM THE
TOP DOWN

3.1 Top Down Assumptions

The type of information which is needed on a regional level to determine
appropriate splits of the input-output coefficient matrix into components, as in (4),
is the extent to which businesses purchase their inputs from within or without the
region in which they are located. The “top down” approach uses national information
which in the first instance, is treated as informative of the structure of the regional
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economy. There are several options for choosing the regional sub-matrices whilst
enforcing (4) within this approach. At one extreme, for example, one could have

A, =4, =Awithd, =4, =0 (8)
and this is effectively the very extreme assumption made in using national input-
output coefficients, unadjusted, in regional analyses. Refer to this as the “isolated
region” assumption.

For ease of subsequent exposition, it will be convenient to treat this very extreme
assumption as a kind of base case assumption which could be applied initially to
generate a regionalised input-output matrix. Other assumptions, to be discussed
below, can then be conceptualised as being applied subsequently in order to modify
the extreme implications of the isolated region assumption. With this in mind,
squation (8) may be rewritten as

0

Ag = 1,84 (89

where the superscript 0 indicates that this is an initial variant of the regionalised
mput-output matrix. 3

An alternative, less extreme but also unrealistic, assumption would be to
oresume that each row of 4,, and 4, is proportional to the size of the relevant
mdustry total in ¢, relative to g, while corresponding industry rows in 4,, and 4,,
zre proportional to industry totals in ¢, relative to g. Refer to this as the “microcosm
21 the economy” assumption. Under this assumption,*

A, =¢,d'4and 4, =4,47'4 (9a)

Zescribe the input structure for Region 1, while

A, =44 '4and 4,, = 4,47'4 (9b)
Zzscribe the input structure for Region 2. Thus the microcosm of the economy
sssumption relates the linkages between regions to their relative economic size in the
=ational economy. More generally, the diagonal matrices of row modifiers 4,4 ™
a:nd 4,4 " could be varied to reflect changing marketability conditions for Region
. vis a' vis the rest of the economy. In particular, the row modifier vectors in (9b)
=2ed not be related to those in (9a). If w, represents market retention weights for
Szgion 1 and w, represents market attraction weights from Region 1 to Region 2,
e more general form of (9) is

A . =w A4, A

gy S A-W)A, A, =w A, A, =I-w)d (9

I, is a 2 x 2 identity matrix and @ denotes the Kronecker product.
The » symbol denotes a diagonal matrix formed from the vector operated upon.
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Other extreme and generally unrealistic allocations of the national input-outpu:
information to the regionalised model include the “unrepresentative region” (from
the point of view of Region 1) assumption

A, =A,=0and4, =4, =4 (10

and, at the opposite end of the spectrum the “powerhouse region” assumption

A, =A,=Adand 4, =4, =0 (11

The unrepresentative region assumption (10) is assuming that Region 1 cannot
meet its own intermediate needs, while the powerhouse region assumption (1!
assumes that Region 1 meets these needs not only for itself but also for Region 2.

More realistically, a mix of all these assumptions could be applied. To illustrate.
suppose that the common technology and common external links assumptions (< 1.
apply to all products but the other assumptions apply only to selected inputs. Let J
be an i x k matrix selecting those inputs (rows) of 4 for which the isolated region
assumption is to be applied. Then (8) may be condensedto J 4,, =J 4, J. 4, =0.
with the relevant restrictions on 4,, and 4,, holding automatically by virtue of (4)
Similarly, letting g select those g rows for which the generalised form (9') of the
microcosm of the economy assumption is to be applied, J_ select those u inputs tc
be covered in Region 1 by the unrepresentative region assumption and J_ select the
p inputs for which the powerhouse region assumption is relevant to Region 1, the
mix of restrictions (4), (8)-(11) may be represented as®

I, Ik Il: I
J, 0 J 0
11 A12 A 0
Jg ] ‘ = .Ile Jvﬁz (12)
A = & “lo 4
21 22
J, 0 0 0
_JP OJ 7 JP-

The types of assumptions which have been highlighted in (12) are rather
extreme. As such, even if they are used selectively for certain inputs only, it may be
the case that they are only applicable as a description of the input structure of certa:
activities in Regions 1 or 2, not for all activities. These assumptions can, howeve-
be applied selectively to activities by the use of column operators applied to
modified form of (12). This allows the restrictions in (12) to be applied only tc
particular columns of 4.

Let ¥, denote a diagonal matrix of weights representing the extent to which
particular columns of the national input-output matrix 4 are to be utilised as

> The subscripting of / and J matrices indicates the dimensionality (of /) and number of

rows (of J).




Assimilation of Regional Sample Information into Input-Output Models 23

restrictions on corresponding columns of the Region 1 interindustry block 4, . Thus,
a weight of unity in position j allocates the isolated region assumption to activity j
in Region 1, a weight of zero allocates the unrepresentative region assumption to
Region 1 from the point of view of this activity, and so on. Let ¥, denote a diagonal
matrix of weights which will be applied similarly to the intraregional block 4,

Here a weight of unity in position j allocates the powerhouse region assumption to
Region 1 from the point of view of activity j conducted in Region 2, while a weight
of zero would allocate the isolated region assumption to this activity in Region 2.

11 . ) }
Let C, select those columns of which are to be restricted by assumptions
21

. 2 .
such as those discussed above, and let C, select those columns of which are to
22
be restricted. Generally, the column restrictions may be represented as

4,C, = 4%,C,, 4,C, = A(I-$)C,, A,C, = A¥,C,, A,,C, = A(I -9,)C,,
that is
n 4|6 0 =A 0| Y1 v, € 0 (13)
L Al ¢l o all-v, 1-9,|j0 c,

3.2 A General Model of Top Down Restrictions

Combining sectoral selection relationships such as the column restrictions (13)
with regional characteristics assumptions such as the row restrictions (12) suggests
the general structure of restrictions

TAV = RA'S (14)
where 4, = 1,®4.

Here Ay & is an initial (extreme) assumption on the structure of the regionalised
matrix 4,. Matrices 7, ¥, R and § are constructed to allow for more realistic
z_ssumptions on the relative importance of the regions and of the sectors within them.

Zquation (14) enforces the desired restrictions on relevant elements of A, by row
_nd column operations applied to the base case regionalised matrix A

Equation (14) is meant to be indicative of the structure of a w1de range of
sossible restrictions which could be employed in the top down approach. In general,
T and R will both be of dimension m x 2k where m is the number of independent row
~sstrictions, while ¥ and S will both be of dimension 2k x s where s is the number of
column restrictions. In pure application of the top down approach, 4, can be
constructed exactly from (14) if m = s = 2k or by generalised inversion (requiring
some selection criterion) if m > 2k and/or s > 2k, such as by use of Moore-Penrose
zeneralised inverses giving, for example, a restricted regionalised matrix, 4, say,
constructed as
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Ap = (T'D)'T'RA SV (VY = R°45S" (13

The purpose in setting out the top down approach in this way is not i
recommend relationships such as (15) as a stand-alone procedure for construction of
the regionalised input-output matrix 4 ,, however, but rather to record the structura.
form of the relationship between 4, and 4, given by (14), as indicative of a toz
down methodology which begins with the national input-output matrix 4, expands
this to a first-pass naive regionalised matrix 4 ,2 = I, ® 4 and subsequently modifies
this through a series of selective assumptions to arrive at a more realistic structurs
for the regionalised matrix.

4. REGIONAL MODEL CONSTRUCTION: WORKING FROM THE
BOTTOM UP

4.1 Basic Regional Data Requirements

While a (data intensive) regional approach which would be analogous to the
comprehensive (census based) national approach could always be developed, the
focus of this paper is on an approach which will be less demanding in terms of datz
collection, more amenable to frequent revision of data, and which will ultimately be
complementary to the national statistics. For this reason a statistical (regression
based approach is proposed.®

Continuing to focus on one particular region (Region 1) versus the rest of the
economy (Region 2), suppose that a sample of » firms throughout Region 1 is taken.
and details of these firms’ purchasing decisions and patterns of sales are recorded on
a regional and commodity basis. Let

denote a 2k x n absorption matrix of commodities by the sample of firms from
Region 1, where Y,, is a k x n (commodities by firms) matrix of purchases from
within the region, while ¥,, is a similarly dimensioned matrix of purchases from
outside the region (that is, flows from Region 2 to Region 1).

Correspondingly, let

X = [X; X,]

S In discussing this approach, it is assumed that sample information is available from one
region only (Region 1). The technology of both Region 1 and Region 2 is inferred from this.
The approach generalises to allow sampling from all regions. However, focusing on Region
1 in the exposition brings out most clearly both the power of the approach and the extent of
dependence on strong commodity technology assumptions.
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denote an n x 2k make matrix of sales by firms in Region 1 of commodities sold
within the region (X,,) and of commodities sold outside the region (X,,). Both X\,
and X, are n X k (firms by commodities) matrices.

It is proposed to use a statistical procedure to split the & x k national input-output
coefficient matrix into its 2k x 2k regionalised variant 4, using the regional
information available in ¥ and X. For this purpose, the sample of firms should be
greater than twice the number of commodities (» > 2k). Additionally, the selected
firms should collectively produce the full range of commodities under consideration
(or alternatively, only exclude those commodities for which a simple assumption
such as those discussed in the previous section would suffice). For expository
purposes, it is convenient in this section to suppose that all commodities are
represented as inputs and as outputs within the sample of firms.

4.2 Stochastic Commodity Technology Model

A stochastic extension of the commodity technology assumption applied to
Region 1 allows observations over the sample of firms to be interpreted as
information on the structure of the regionalised matrix 4 ,. Specifically

Y = Xdp+U (16)

In (16) each column of ¥’ (row of ¥) shows the purchases of a commodity as an
input by the sample of # firms. (Each row of ¥,, shows purchases of an input from
within the region, while the corresponding row of ¥, shows purchases from outside
the region. For expository purposes purchases of an input from different regions can
be regarded as different “commodities”.) Consider commodity j, and denote the g
column of Y' by y;. Then (16) implies

¥ =Xaj+uj; j=1,-,2k (17)

where a, is the j® column of 4 ;. Interpreting (17) as a regression equation, the
stochastic version of the commodity technology assumption allows the expected
usage of commodity j as an input to be “explained” by the various columns of the
matrix X in the sense that each of the 2k columns shows evidence (across the n
sampled firms) on the production of a given product which in principle uses
commodity j as an input. Here again outputs to different regions are treated as
different commodity types. Thus, a particular input (the j*) is needed to produce a
range of commodities, and X contains sample evidence on this usage which can be
employed to infer the size of the input-output coefficients related to input j and the
full range of outputs.

The vector a, contains the elements of the j* row of 4, . These are input-output

11 ! - -
coefficients for Region 1 (j* row of ) and, by virtue of the (rather strong in this
21
sontext) commodity technology assumption, input-output coefficients for Region 2
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(" row of i ), inferred by implication from the pattern of production of
22

commodities produced in Region 1 but destined for Region 2.

It should be noted here that the commodity technology assumption as employec
in this context does not require firms to produce the same commodity destinec
variously for Regions 1 and 2 to the same specifications. What it imposes is the
restriction that Region 1 firms produce commodities destined for Region 2 to the
same specifications as competing firms who produce this commodity in Region 2 for
sale within Region 2. This being so, it would probably be sensible to use a restrictec
estimator which estimates (17) subject to the restrictions (4). Such an estimator is
readily available as a special case of the approach proposed in the sequel. The
purpose of this section, however, is to outline the econometrically based bottom up
approach in its extreme form in which information from one region is used to infer
the technology for the entire economy.

4.3 The Seemingly Unrelated Regression Estimator

In (17) each of the input-output coefficient vectors (one for each commodity
input) is estimable from a seemingly unrelated regression using the same explanatory
variable matrix, the make matrix X. In each case, an error vector u, allows for the
fact that the sampled firms actually employ the same commodity technology only on
average. Equation (17) is therefore equivalent to a system of regression equations
which may be solved under a criterion such as minimisation of sum of squared errors
to obtain estimates of 4, say :4; . The ordinary least squares estimator of a; in (17)

is
a, = XXXy, j=1,-,2k (18)
Stacking these estimates side by side gives
4] = X'0"x'Y’ (19)

and transposing this, the “two regional” input-output matrix is estimated as

A, = YX(X'X)! (20)

The estimates (20) are, however, unrestricted.” It will be noted that in this

7 It will be convenient to introduce notation which anticipates later extensions

accommodating restricted estimation by rewriting these equations in system form using
Kronecker product notation and vec operations. In moving from matrix equations to
vectorised forms of the same equations, repeated use is made of the vectorisation rule
(stacking matrices by columns): vec(AB Ci= ®A)vccB In this notation (16) becomes

vecY’ ®X)vecA +u (16"
where u = vecU, a disturbance vector Wthh is assumed to have variance-covariance matrix
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statistically based “bottom up” approach no account is taken of national data at all.
The entire economy wide “two regional” model is constructed from the regional
sample data matrices Y and X .

4.4 Features of the Approach Related to its Econometric Aspects

‘Before extending the statistically-based model to allow incorporation of “top
down” restrictions, it is worth pointing out some useful features of the basic
approach. There is, of course, no reason why this approach needs to be restricted to
a multi-regional context. Indeed, in its originally proposed form (Cooper (1971)) the
approach was presented as a natural extension of the development of input-output
tables at the national level. In that context, if ¥ and X are national absorption and
make matrices respectively and the commodity technology assumption is written in
its more usual deterministic form as ¥ =A4X’ then the standard approach to
constructing a commodity by commodity input-output table would be to invert the
(square and nonsingular) make matrix to obtain 4 =¥(X)™'. Cooper (1971)

suggested the use of the Moore-Penrose generalised inverse when X is rectangular
with more “observations” - firms, establishments or activities - than “explanators” -
commodities, output products or sectors) to obtain the commodity by commodity
coefficients matrix as 4 = ¥X(X'X)"' and, noting that this is the least squares
‘ormula, proposed a stochastic variant of the commodity technology model. The
fzatures of the econometric estimation technique which are summarised in this sub-
section apply irrespective of the particular regional focus of the current paper.

Feature 1: Standard Errors

Firstly, standard errors associated with the coefficient estimates rnay be readily
2btained. Model “predictions” of the absorption matrix are Y= A X' so that, given
20), the estimated residuals are ¥ -¥ = ¥[I - X(X'X)"'x]. The estlrnated variance-
sovariance matrix of the input-output matrix of parameter estimates A is
TR X! where T = Y[I-X(X X)X 1¥'/n is the matrix of maximum likelihood
sstimates of X.®

Since the coefficient estimates are produced from cross-sectional information on
firms’ uses of inputs in the production of outputs, the estimated input-output

> 81 This allows within-firm cross-input correlation through the 2k by 2k matrix of
.ontemporaneous” correlations X, but excludes cross-firm correlation. In view of (16"), the
s==mingly unrelated regression estimator is

vecd, = [(1,®%)(Z®1 )™ (1,801 (E®1) (1, 8%) vec ¥’
= 12k®(X/X)'1X/]vec Y’

zving (19) on reversal of the vec operation.

*  The i block diagonal component of Z&(X 'X)™! is the estimated variance-covariance
=atrix of the i row of the input-output coefficient matrix and the if* off-diagonal block is
2= estimated covariance matrix of the ™ and / rows. These formulae are based on the
=sumptions associated with model (16”), discussed in footnote 7.
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coefficients represent the technology of the “average” firm and the standard errors
are informative of the degree of technological variation in the sample. This opens uz
the potential for the use of the standard errors for a variety of purposes, such as for
analyses in which the average input-output coefficients are adjusted by some fraction
of the standard error to represent technological change, to provide estimatec
multiplier effects under alternative scenarios as to the technology employed by firms
at the margin, and so on.

The calculation of standard errors in this context (typically, a system of
seemingly unrelated regressions with common regressors) also opens up intriguing
possibilities for the interpretation of insignificant coefficients. In single equation
regressions, or in systems with different explanators for each equation, it is not
always easy to determine whether insignificance of parameter estimates should
denote “true” insignificance or be due to insufficient sample variation in the relevan:
explanator. Mechanical attempts to measure the extent to which multicollinearity
may be causing the insignificance are problematic.” However, in the case where the
same explanators appear in each equation there is more help available in avoiding
Type II errors than is normally the case. In the interpretation of “zeros™ in
coefficient matrix as an indicator of (lack of) structural relationships within an
economy, avoidance of the error of accepting the null hypothesis when it is false is
of considerable importance - rather more so than conventional tests, whica
concentrate on avoiding Type I errors, would allow.

Suppose, for example, that a coefficient is estimated as insignificantly differen:
from zero. Is it acceptable to assume that the true coefficient is zero in this case (with
implications for interpretation of the structure of interindustry relationships in the
economy) or should caution be urged because of possible multicollinearity masking
a potentially important interrelationship? The fact that all coefficients in any given
column of the input-output matrix are estimated by use of the same explanator means
that a method is at hand to help unravel this dilemma. Inspection of the standard
errors of other coefficients in the same column can help. If any of these are
significant then there is evidence that sufficient variation in the explanator, linearly
independent of other explanators, is available in principle to uncover the significance
of the explanator. In this context, the insignificance of a particular coefficient almost
certainly means a lack of correlation between the input and the output over the
sample, and so can be attributed to “true” insignificance with considerably greater
certainty than would be the case in the single equation and/or different regressors
case.

Turning the issue around, suppose that all coefficients in a given column are
statistically insignificant. Since it would be unreasonable to suggest that different
inputs are correlated with the one explanator to the same degree, this would almost
certainly suggest that there is a problem of lack of sufficient independent variation

[T}

9

Attempts to construct statistics to “infer” the degree of multicollinearity are
methodologically suspect since multicollinearity, if it is present, is a data problem, not an
attribute of a population whose characteristics can be inferred from statistical procedures
applied to a sample.
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in the relevant explanator compared to others. This is more plausible than the
alternative that the product in question requires no intermediate inputs. In this case
caution should be exercised in declaring the structure to contain zero elements, since
multicollinearity is likely to be present to a degree sufficient to cause the
experimental situation to be regarded as one of poor design.

The above discussion points to a very valuable aspect of the proposed approach
for application in cases where zeroes in the coefficient matrix are of interest, such
as in analyses of structure. In this case, access to standard errors can be very
valuable. They can also clearly be of great value when “important” coefficients are
to be distinguished from less important ones. In particular, they offer an opportunity
to avoid the mistake of classifying a coefficient as important based on either its
direct size or its indirect multiplier effect when in fact the coefficient may be
statistically insignificant.

Estimated covariances between coefficients are also very useful. For example,
if an insignificant coefficient is set to zero, unless other coefficients in the same
column are adjusted the burden of adjustment falls fully on the value added
coefficient because of the adding up identity (see Feature 2 below). However, by
making use of information on covariances, adjustment of other coefficients can be
spread in a manner consistent with the sample evidence.

Following initial estimation and discovery of insignificant coefficients it would
also be possible to make the adjustments by re-estimation, imposing zero restrictions
on the insignificant coefficients. This would effectively reallocate the values
associated with the insignificant coefficients to other coefficients in the matrix. This
nvpe of step-wise procedure does bring with it problems of determination of the
“true” level of significance in subsequent tests. However, on a practical basis, it is
2 natural way to reallocate based on sample evidence.'

Feature 2: Automatic Adding Up

A second feature of the approach which may not be immediately obvious is that,
ov virtue of accounting identities in the data, each column of 4, sums to less than
unity. The remaining fraction may be interpreted as the component of a dollar’s
worth of production paid for the use of primary factors, imports, indirect taxes and
other exogenous inputs. To see this, let all of the exogenous input accounts be
iefined by a matrix Z, which depicts absorption of these inputs by firms in Region
.. Total inputs of all the sampled firms from Region 1 may then be defined by the

dentity g’ =i |. However, it is also true that g = Xi so that g'= i’X". Now suppose

“hat the valued added and other coefficients are estimated by the use of a similar
methodology to that employed for the intermediate input coefficients. That is, the
orimary and other inputs demand functions are assumed to be of the form Z =
" X+W, mirroring the commodity technology assumption for intermediate inputs,

Some of the features associated with the calculation of standard errors are illustrated in
e appendix.
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(16)." Then, following formula (20), the value added coefficients could be expresses
as ¥V = ZX(x'x)™'. It follows that

A
TR Ly
i =i

vV

Y

ZX(X’X)“ =g XX =ik Xt =i

thatis, i’V = i’-i'd,, and as long as the individual rows of the exogenous inputs are
not required in disaggregated form, the overall total exogenous inputs (say, “valus
added”) coefficient row can be estimated by subtraction as i’ i 4 . Technically, the
variance-covariance matrix of the full system is singular and any row or singie

A
combination of rows of | " may be dropped from the estimation without affecting
4

the estimates of the remaining rows. In the current context it is natural to estimate
the intermediate inputs and drop the equation for the (aggregated) value addec
coefficients, leaving them to be implied residually via the adding-up identity.!?

Feature 3: Ease of Model Generalisation Incorporating More Theory and Data

A third feature of the approach is that it lends itself to embedding within a mors
general modelling context. Specifically, the assumption of a Leontief technology can
easily be generalised. The estimation technique extends naturally to allowing for
variable (either deterministic or random) parameters. This simply requires the
addition to (16) of an auxiliary assumption on the process generating the variation
in the average input-output coefficients. To illustrate, suppose that 4, = BCD where
B and D are matrices of data. If the objective is to model interregional trade as price
responsive, the data in B and D could consist of differential prices or transport costs
for inputs purchased from different regions. Alternatively, if production functions
are to be modelled as non-homogeneous, the data in B and D could consist of
indicators of sectoral activity levels. In this illustration, the matrix C would be 2
collection of “deep” parameters which may be smaller in size than 4 z (@ more
parsimonious parameterisation) or larger in size than A4, (available data on
explanators permitting).

Now since the auxiliary assumptions 4, =BCD imply tha
vecA, = (B®D )vecC’, it follows that (16") generalises to

vecY’' = (BRXD ‘yvecC' +u (16")

' This is not necessarily a restrictive assumption. There is no reason why ¥ need be

constant (although if 4 is constant then i’} would be constant). See Feature 3 below for a
discussion of related issues for intermediate input demands.

12 The invariance of the econometric estimates to which equation is dropped from the
estimation is a general feature of econometric estimation of systems of equations in which
cross-equation adding-up (“budget”) constraints hold in the data. See, for example, McLaren
(1990).
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Since B need not be block diagonal, the system of equations may no longer be
seemingly unrelated, but (16") is still a straightforward regression estimation
problem.

The illustration demonstrates a natural way to introduce either behavioural or
technical assumptions (or both) into an extended form of input-output analysis. The
analyst can still work with the matrix of average input-output coefficients, but treat
it as variable and update it as necessary by the economic modelling of firms’ average
intermediate input decisions.

Another possible generalisation is a random coefficients approach in which the
auxiliary assumption is 4, =4, +W, where 4, is the expected input-output
coefficient matrix and W is a matrix of zero mean random variations around the
“average” technology. This leads to natural heteroscedasticity in the model and
would require GLS estimation."

Of course, the variable (data dependent) and random parameter approaches could
be combined in various ways. For example, the auxiliary assumptions could be that 4 , = BCD
with C a random matrix further parameterised as C = C * + W where the * indicates
expected values of the random parameters. The essential point is that, by appropriate
choice of auxiliary assumptions, a reasonable compromise can be found, if necessary
by experimentation, between theory and data in construction of the model.

Given that the approach presented here is designed for use with cross-sectional
data, there may of course be rather limited options for accumulation of appropriate
data which could explain variation in the average input-output coefficients.
Nevertheless, the point should be made that this type of extension is available in
principle. It would be especially attractive if time series data on prices were
available. With cross-sectional data in a multi-regional context, the approaches to
model extension outlined above also suggest an avenue for modelling interregional
trade coefficients as a function of transport costs.'*

“ In this case the interpretation of the standard errors involves other issues in addition to
those discussed above. In particular, they contain evidence on different technologies, not just
due to other factors omitted from the explanation of input demands, but due to different inputs
required per unit of output under, say, an efficient technology compared to a less efficient
one, all other factors held equal. This opens up prospects for additional use of the information
contained in the standard errors to represent the potential for future diffusion of the better
:=chnologies and to allow options for updating the average input-output coefficients based on
this evidence.
“  The “data” matrices B and D, whether they consist of “hard” data or indicator variables
say to represent qualitative influences), control the extent to which the “deep” parameters™
n C influence components of 4 . It is possible in principle to use them, therefore, to control
the extent to which firms make locational decisions on purchases. Explanators could include
Tansport costs, location of head office (within or outside a region), partnership commitments,
and so on. An additional aspect of the value of this type of extension to the model is that it
opens up the potential for interesting comparative static exercises based on greater or lesser
rzgional participation of firms.
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4.5 Working From the Bottom Up with Limited Information

In sub-section 4.3 it was assumed that the bottom up information would enabis
inference on all input-output relationships. In reality, it is likely that sampis
information will be inadequate for this purpose for at least two reasons. Firstiy.
sampling may not cover the full range of activities in the region. This could be dus
to a deliberate decision to reduce the costs of sampling by concentrating on certza=
key sectors for the provision of primary data with the intention of employing tog
down techniques to fill out the missing information. Second, any one region may noe
be representative enough to yield the required range of national input-outpus
information, even if a generous sample is available. Again, having concentratec
attention on what the sampling allows, it will be necessary to fill out the input-outpes
structure via the addition of top down techniques.

In the next section an approach to the integration of top down and bottom vz
information is outlined. However, to allow for the limited sampling options outline<
above, it is first necessary to modify the notation for the bottom up approach =
recognise the reality that only certain components of the full regionalised inpuz-
output structure are likely to be able to be freely estimated from sample data in the
manner described in sub-section 4.3. The purpose of this sub-section is to set up the
necessary notation to enable a limited sampling option to be integrated into z
structured approach to full model construction.

Recall that the 2k x »n absorption matrix Y represents absorption of commodities
bought both from Region 1 (¥,,) and from Region 2 (¥,,) by a sample of firms in
Region 1. Since the list of 2k “commodities” conforms to the k£ commodity
categories contained in the national input-output accounts, it needs to be recognised

that the sample of firms taken from Region 1 may not yield records of purchases of

all 2k commodities, or may yield data which is considered unreliable for the
purposes of the inferential procedure proposed in the previous sub-section. Define
a selection matrix P, say, which selects only the useable rows of ¥, eliminating the
uninformative rows (that is, the zero or unreliable rows of ¥,, and ¥,, and/or those
rows for which a deliberate decision is made not to obtain and use sample
information). For completeness, let P denote a matrix which selects the
“uninformative” (in view of the sampling decision and/or results) rows of Y. Let

where P, selects the useable rows of¥,,, P, does the same forY,,, while the non-
useable rows are selected respectively by P , and 152 . The bottom up approach must
now be understood as applying only to those rows of commodity inputs for which

sample information is contained in the restricted absorption matrix PY.

=
The row permutation matrix E =| _| rearranges the rows of ¥, moving to the top
P
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those rows for which sample based statistical estimation is deemed appropriate and
moving to the bottom those rows for which this approach is deemed inappropriate.”

Correspondingly, define a selection matrix O which selects only the informative
columns of the » x 2k make matrix X, eliminating those columns of X, and X,, for
which no sample information on sales is available. Clearly, input-output coefficients
estimated as parameters of output constrained input demand functions cannot be
obtained if no sample information on particular outputs is available. The lack of such
sample information could be related to the structure of the region or to deliberate
cost-cutting decisions, but the precise reasons are not relevant here. Instead, the
objective is to deal with the restricted sampling issue for whatever reason it might
arise. The preceding analysis needs now to be modified so that it may be thought of
as applying to the restricted sample make matrix XQ. Let O select the zero (or
uninformative, or deliberately unsampled) columns of X corresponding to
commodities for which no (or insufficient) output information is available from the
sample. Let

@, 0 16 e, 0
Q = an Q = .
0 9 0 0,

S0 tha:t 0, and Q, select the relevant columns of X, and X,, respectively, while é1
and Q, select the remaining columns.

The column permutation matrix F = [Q Q] rearranges the columns of X, moving
to the left those columns for which sufficient information is available to enable them
to act as explanators in the estimation of input-output coefficients.'®

The two-region input-output matrix may now be written in terms of the
subcomponents for which relevant sample information is and is not available as

3 ) P40 PAG|
4, =E| laJo 8lF' =] " " |F 1)
2 PA0 P40

and P4, Q is that subcomponent to which the bottom up approach is to be addressed.

It is worth notmg for later use that E is an orthogonal matnx so that
E” =E’=[P’ P'] and hence the following useful results hold: PP +P 'P =1 and

PP PPl I 0
pp’ FB'| 10 1
0’|
**  Aswith E, the matrix F is orthogonal, so F ! =F’ = . and we note for later use the
9 |
Witere-om ' =1 0’0 00| 10
following implications: QQ "+QQ =1 and i 3
o'o 00| 101
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The stochastic commodity technology assumption (16) may now be applied tc
the statistically reliable portions of the sample absorption and make matrices PY anc
XQ in order to estimate the P4,Q subcomponent of the full regionalised inpu:-
output matrix (21). Effectively, the model now is

(PY) = XQ(PA,0) +U" 22

where (22) may be interpreted as intermediate input demand functions corresponding

to the useable input information, modelled as dependent upon the recorded outputs
Following the reasoning in the derivation of (20) from (16), the subcomponen:

two-regional input-output matrix estimated by the bottom up approach is"’

P40 = PYXO(Q'X'X0)™" (23

The remaining subcomponents of the two-regional input-output matrix (21) must
clearly be constructed in some other fashion. For illustrative purposes, it is assumed
here that top down restrictions such as those implied by (15) are applied to these
subcomponents. The full two-regional matrix may therefore be represented as

r PA,Q0 PARQ
A, = E’ i i ~F’ (24)
PA,Q PALQ

where the subcomponents come from (23) and relationships such as (15).

5. ON THE INTEGRATION OF THE “TOP DOWN” AND THE
“BOTTOM UP” APPROACHES

5.1 Isolating Relevant Top Down Restrictions

The top down approach makes very little use of regional data. Regional
information is only employed in selection of the types of constraints to be imposed
in (14). The proposed bottom up approach (20), on the other hand, makes too
extensive use of regional data since it constructs the entire 4, matrix from sampled
firms in Region 1. Even in the modified bottom up approach (23), in which it is

17" Following the notation mtroduced in footnote 7, (22) may be wrltten

vec(PY) = (I, ®XQ)vec(PA o) +u* (22"
This makes use of the vectorlsatlon rule vec (ABC) (C '®A4)vecB where 4 = X0,
B =(PA RQ) ’A RP C =1,,u” =vecU" and the identity matrix J, is of dimension
equal to the number of rows in P. The seemingly unrelated regression estimator 1s

vec(PARQ) [, ®Xx0) (ZQ1) (I, X '(ER1) (1, Rx0)vec(PY)
= [1,8(0'X'X0)" 0 X | vec(PY)’

giving (23) on reversal of the vec operation and transposition.
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explicitly recognised that only a subcomponent of the two-region input-output matrix
can be constructed from regional sample information, the regional data is still being
asked to do too much since inferences on the technology of firms in Region 2 - and
inferences on the extent to which firms from Region 2 utilise products from Region
| - are being drawn from sample information on Region 1 firms only."®

While (24) represents one possible approach to combining top down and bottom
up information in the estimation of the full regionalised matrix 4, it is somewhat
arbitrary in that top down assumptions are used only for those sub-matrices where
bottom up estimation is not possible. For the sub-matrix P4 ,Q , where bottom up
estimation is possible, this approach ignores any top down information. However,
it is possible to integrate some top down information into the estimation of P4,0
by using a restricted estimation technique instead of the unrestricted estimator (23)
outlined in the previous section.

To exploit fully the opportunity for restricted estimation of the sub-matrix P4 .0
it is necessary firstly to develop notation to represent restrictions which apply
specifically to this sub-matrix. To isolate these restrictions, define a row-restrictions

P
permutation matrix £, = ﬁr is defined, which permutes the rows of T as follows: P
T

selects the rows of T which apply restrictions to those rows of 4, which are selected
by P. All other restrictions on rows of 4 ,, which by definition are not relevant to the
estimation procedure, are selected by P

By thelr construction, the selection sub-matnces P_ and P have properties such
that P TP =0 and P_.TP’ =0." It follows that there exists a matrix 7, =F P
with the property that T P =P T and there further exists a matrix T P TP w1th
the property that T;P = P =y 20

The matrix T, contams all the row restrictions which are relevant for estimation
of the sub-matrrx P40 . All other row restrictions, which are not relevant for the
sampling based statlstlcal estimation of P4, Q, are collected within Tj.

18

There is, of course, no reason why Region 2 firms could not also be sampled (funds
permitting). However, the basic point still remains that weak statistical estimates could be
strengthened by imposing (reasonable) top down restrictions.

To justify the first of these in some detail, note that P.. is designed to select restrictions
in T which apply to those rows of the input-output coefficient matrix which are to be
estimated from sample data but for which restrictions (other than full exclusion restrictions)
are to be applied in the estimation. On the other hand, P is designed to select rows which are
not to be estimated at all. Thus P T cannot by its design apply to the rows of the coefficient
matrlx which are to be selected by P . By similar reasoning, it is apparent that neither can

select the rows selected by P. This structural (lack of) relationship is used in the proof
of the result in footnote 20.

*  To demonstrate this property for T, note that

TFP'PTPP PT(I PP) R PTPP—PT
where the first equality follows from the definition of T',, , the second from the results implied
by the orthogonality of E, discussed in footnote 15, and the final equality follows by the
constructed nature of P,T in contrast to the nature of P, as discussed in footnote 19.
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Now define a composite row restriction-selection permutation matrix
T, = E,TE' and observe that

/ =) / -~/
ol 57 p.7p’ P1P| \TPP! T,PF| [T, 0
] p.rp’ BB\ |T;PP’ THF'| (0 T;

that is, T, has a block diagonal structure.*

Similarly, define a column-restrictions permutation matrix F,, = [@, @] which
permutes the columns of V such that the sub-matrices 0, and Q, separate out (for
purposes of concentration on the sub-matrix PA,Q) the relevant and irrelevan:
column restrictions on 4 ,. Then, by constructlon 0 { VQV =0 and O VQV =0 ,~ and
there exist matrices ¥, =0 'vQ, and Vs =0 VQV with the respective properties
QV,=VQ,and OV; =VQ,.”

Now define a composrce column restriction-selection permutation matrix
v, =F'VF,. It follows that

a block diagonal structure as in (25).*

Now, using the permutation matrices E, and F,, the general restrictions (14)
may be rearranged into the permuted form

E,TAVF, = E_RASF, 27)
and, given (21), (25) and (26), the left hand side of (27) may be set out as

/ / T, 0|P4,0 P4,0|V, 0
E.TE'EAFF'VF, = T(EAF)V, = (28)

0 Ts|Pa,0 P4,0|° V5

It follows that the relevant restrictions to be applied in the estimation of P4,0 may
be read off directly from the upper left block of (28) and (27) as

2l The first two equalities in (25) are definitional. The third equality follows from the

properties of T, and T, discussed above and demonstrated in footnote 20. The final equality
uses results given in footnote 15, based on the orthogonality of E.
22 Reasoning is similar to that in footnote 19.

These results follow in a similar manner to those discussed in footnote 20 with the
obvious modifications. For example, results from footnote 16 replace those from footnote 15,
drawing on the orthogonality of F.

24 These results follow in a similar manner as for (25), with the use of the analogous
intermediate results.

23
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T(PAQ)V, = R, 4,5, (29)

where R, =P R and Sg =8Q,.

3.2 The Restricted Seemingly Unrelated Regression Estimator

To impose restrictions (29) in the context of the modified bottom up model (22),
-=call from (22') (footnote 17) that the model may be written

vec(PY)' = (I, ®XQ)vec(P4,0) +u" (30)
Now, using similar notation, the top down restrictions (29) may be written as®
(TP®Vé)vec(PARQ)’ = vec(R},A,gSQ)/ (31)

50 that restricted least squares estimation of vec(PA RQ)’ in (30) subject to the linear
-zstrictions (31) implies®

vec(PA Q) = vec(PA,0) - {THT,Tp) '®(Q ’X’XQ)“VQ[Vé(Q X'x0)'V,17'}
x {(TP®Vé)vec(P—AR_Q—)/ - vec(RPA:SQ)/} (32)

where vec(PA4 RQ)’ is the ordinary least squares estimator of (30), that is, the vec of
De transpose of (22). Effectively, this implies that the restricted estimator of P40

/ i 0 T A
PARQ = PA QO + Tp(T,Tp) '[Rp4gS, — Tp(PAQ)V )]

tgnifar I o it -1 (33)
x [Vo(Q X' XQ) 7,17V p(Q X 'XQ)

=here PA,Q is given by

P40 = PYXQ(Q 'x'x0)™ (34)

=guations (33) and (34) represent a structured approach to construction of the
subcomponent P4 O of the regionalised input-output matrix 4 , . The subcomponent
= estimated econometrically from the (limited) absorption matrix PY on a

seemingly unrelated) row by row basis using the (limited) make matrix XO as the
s=2 of explanators. Although the formulae are not displayed here, it is clearly possible
= this statistical approach to obtain standard errors for all the estimated coefficients
=d overall goodness of fit measures for each row of the regionalised coefficient

-

This follows on application of the vectorisation rule to the transpose of (29).
This is the standard restricted least squares estimator of (30) subject to (31).
To obtain (33) from (32) the vectorisation rule is inverted and the result transposed.



38 Russel J. Cooper

matrix.?® This opens up the potential for a structured approach to the measuremer:
of model accuracy, such as the calculation of implied confidence intervals for the
elements of the Leontief inverse and the option to conduct sensitivity analyses o=
predictions based on variation of coefficient values within statistically realistc
bounds.

5.3 An Integrated Approach to Updating the Input-Output Matrix

Suppose that an initial version of 4, is available, say 4 ,, which already satisfies
the top down restrictions (14), or equivalently (27). This implies that the relevam
subcomponent of 4 , which is amenable to construction by estimation from sampiz
data (that is, the sub-matnx PA,Q) satisfies (29). It follows that, in restrictec
estimation following further data collection, R, 4, S may be replaced b
T,PA 0V , in(33). Then equation (33) suggests a computatlonally simple procedurs
for updatmg a regional input-output matrix 4 , as new sample information becomes
available. Specifically, (33) implies

PA4,Q = PA,Q + To(T,T;) 'T,(PA,0 - PAQ)V,
* [V (@ X 'X0) 'V )1V (0 X x0)

(35

and P4 ,Q has an interpretation as a matrix weighted average of W and P4,.0.
or, in an alternative interpretation, as a sub-matrix of estimates based upon the
sample information, with an adjustment for the divergence between the sample
information and previous information.

Using the conventions outlined above and the structure implied by (21), the full
integrated estimator may be written as

28 It should be pointed out that the estimation procedure does not guarantee the delivery of

non-negative coefficient estimates. Although the restricted estimation procedure could be
generalised to handle non-negativity restrictions, it would also be possible to use the
appearance of negative coefficients as evidence of weaknesses in the data set which need to
be rectified. For example, if sample information is too highly aggregated, regression
coefficients estimated in the manner proposed may be negative even if, at a more fundamental
level, the implied input demand structure is quite reasonable. To give a hypothetical
illustration, consider the following set of three observations on each of two inputs and two

outputs.
Y, Y X, X Y,+Y, X +X
3 1 6 4 4 10
2 3 4 5 5 9
1 5 2 6 6 8

Suppose input Y, is used exclusively in X while } is used exclusively in,X . Clearly the
disaggregated input-output coefficients are positive, and would be estimated as such at a
disaggregated level (averaging 0.5 for relationship 1 and about 0.56 for relationship 2).
However, when aggregated, the average input-output relationship would be estimated as
negative.
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PA,Q P40

=E F' (36)
PA,0 PAQ

|l

This process can be repeated whenever a new sample estimate, P40, is calculated
using data on regional make and absorption matrices through a process such as (34).
Whenever new sample information becomes available then, since the existing 4,
satisfies (14) or (27), it may be interpreted as 4, and integrated with the new sample
information via (35) and finally into the full regionalised input-output matrix via
(36).

6. CONCLUSION

In this paper an integrated methodology for estimation of regional input-output
matrices has been proposed, based on econometric estimation of regional sample
information subject to restrictions implied by nationally given technological
relationships and assumptions on the various regional relativities. The restricted
estimation technique lends itself to continual updating as new information becomes
available. One major advantage of the approach, clearly related to its econometric
basis, is its ability to deliver measures of the accuracy of the regionalised input-
output coefficients through the standard errors of the regression estimates. In
principle these can be exploited for sensitivity analyses, for determination of
important coefficients, to make allowance for technological progress, to adjust for
changed market conditions and generally to make adjustments for the parameter
mstability which is a major concern in this type of regional modelling.
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APPENDIX. A Basic Illustration of the Econometric Approach

These results are provided to illustrate some of the features of the approach
discussed in sub-section 4.4. They are based on Cooper (1972). In that work the
published absorption matrix for Australia for 1962-63 was aggregated to a
rectangular form consisting of 105 “activities” (observations) on the usage of seven
“products” (input “commodities”). The make matrix, at that time unpublished and
m the form of a 105 by 105 predominantly diagonal matrix, was supplied to the
author by the Australian Bureau of Statistics. This matrix was also aggregated to a
rectangular form, effectively producing a predominantly block diagonal structure so
that “similar activities” produced a reasonably similar range of the seven “products”.
Econometric estimates of the implied average input-output coefficients, using an
squation equivalent to (20), are given together with their standard errors in Table Al.

There is at least one highly significant coefficient in each column. Therefore,
msignificance of other coefficients in each column cannot be attributed to
multicollinearity. In the case of column 1, the (5,1) element (Chemical and Mineral
Products) is the only significant coefficient at conventional test levels. In Cooper

1972) covariances were not calculated, but to illustrate the application the above
wzble is presented after adjustment in which each element which is insignificant
using a t-statistic of 2 as a rule of thumb) is set to zero and the released values of the
soefficients are spread (roughly) proportionally among the significant coefficients.
The procedure demonstates the potential to provide a more parsimonious variant of
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Table A1. Coefficient Matrix from Unrestricted Estimation

Sector 1 2 3 4 5 6 7

1. Agricultural .013 623 .061 .079 .002 .002 .001
Products (.019) (.022) (.044) (.050) (.042) (.018) (.006

2. Processed Foods .015 .036 .007 .002 .010 .001 .001

(.009) (.011) (.021) (.025) (.021) (.009) (.003

3. Clothing, Textiles, .008 003 396 .005 .004 .003 .003
~ etc. (.008) (.009) (.017) (.020) (.017) (.007) (.002

4. Light Manufactures  .009 .021  .013 208 .018 .010 .046
(.024) (.028) (.054) (.062) (.052) (.023) (.007

5. Chemical/Mineral 067 009 012 .025 395 064 03]
Products (.020) (.023) (.044) (.051) (.043) (.019) (.006

6. Heavy Manufactures .054 028 .035 .033 054 233 122
(.042) (.048) (.095) (.109) (.092) (.040) (.013

7. Services 075 15 064 108 120 119 211
(.059) (.067) (.132) (.152) (.128) (.056) (.018

Total Intermediate Inputs .241 .836 588 459 .605 431 417

Value Added 759 164 412 541 395 .569 583

Table A2. Coefficient Matrix after Reallocation of Insignificant Coefficients

Sector 1 2 3 4 3 6 7
1. Agricultural Products %
2. Processed Foods A
3. Clothing, Textiles, 5
etc.
4. Light Manufactures A4 .05
5. Chemical/Mineral 1 o .07 .035
Products
6. Heavy Manufactures 24 125
7. Services 12 215
Total Intermediate Inputs 1 8 S 4 ] 43 425
Value Added .9 2 .5 .6 5 .57 .585

the coefficient matrix by virtue of its concentration on (direct, statistically
significant) important coefficients. The results for the current illustration are giver
in Table A2.

Clearly there is substantial advantage to be gained from simplifying the structure
where statistical insignificance allows. One of the valuable features of the proposal
discussed in the body of this paper is that the restricted estimator allows the
possibility of reallocating insignificant coefficients in accordance with the sample
evidence by imposing zero restrictions in re-estimation where insignificant
coefficients are found on a first estimation. In the interregional modelling context
which is the subject of the current paper, the approach offers the potential to identify
significant interregional trade coefficients.




