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ABSTRACT  This paper applies duality theory to a generalised Von Thiinen model of
location. Generalised Von Thiinen models are defined as those location models where there
is economic attraction in location to some central place but competition for central location
leads to decentralising forces in location through the price of goods fixed in location. The
paper extends duality analysis within the location paradigm to new dual problems of the
direct choice of location to minimise or maximise location relative to central place. The
| paper finds that the optimal value functions associated with these problems are potentially
useful avenues for comparative static analysis in location. Further, the dual approach
enables the identification of alternative conditional demand functions for location fixed
goods which leads to a potentially useful decomposition in the examination of the influence
of location on the demand for such goods.

1. INTRODUCTION

Samuelson (1983, pp.1468-1469), rightly indicates that Von Thiinen’s “Isolated
State” anticipated marginalism and general equilibrium. Moreover, Samuelson
shows unfortunately that these contributions have not been fully recognised in
mainstream economics. In urban economics the story is different. Von Thiinen’s
contribution to location theory is well recognised and his agricultural model with
its familiar rings or concentric zones of cultivation is seen as an important
antecedent to the development of intra-urban models of location equilibrium,
Alonso (1960 and 1964). By the mid 1970s the rapid development of urban
residential models had led to a readily accepted generalisation of residential
location theory based on a Von Thiinen type monocentric city. For the elements of
such a model see Richardson (1977, pp.254-258). More recent developments of the
urban residential model have been couched in terms of duality in optimising issues
associated with residential location. Perhaps the most comprehensive application
of duality in intra-urban residential location, following an Alonso type model, is
Fujita (1989, chapter 2). Not only does he recast the standard Alonso type
residential model in duality utilising the indirect utility and expenditure functions,
but he also produces an important dual in the issue, that of maximising offer price
(bid rent) conditioned on utility.

The purpose of this paper is to recast the general Von Thiinen location model in
terms of modern duality theory. It aims to mirror the general approach to duality in
modern economic theory taken by Diewert (1982), but apply this approach in a
spatial context. The paper is not merely a synthesis of duality theory and urban
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modelling. Novelty is introduced in the approach through:

e the fact that this is perceived as a general approach to all Von Thiinen type
location models;

e the derivation of the bid rent function from the optimal value function of the
primal problem. This is different from the usual route taken in the literature;

e the utilisation of alternative dual problems such as choosing a location to
minimise the difference between bid rent and market rent, or choosing a
location directly to minimise or maximise radial distance, all subject to the
constraint that bid rent must be at least equal to market rent.

e the derivation of a conditional demand function for a location good such as
land.

The aim is to produce a general approach to Von Thiinen location models;
therefore objective functions, definitions of choice variables and parameters have
been left suitably general to include production and consumption problems. A
generalised Von Thiinen model, as a location model, will have the following
characteristics:

Location is relative to some central point, with location forces being equal in
every direction, so that location refers to radial distance from that central point.

1. For the locators there is some economic attraction in proximity to the central
place (centripetal force).

2. Location relative to the central place requires purchase of a location fixed
good, say land.

3. In competition for central location the price of the location fixed good, as a
decreasing function of radial distance, acts to disperse locators around the
central place (centrifugal force).

2. THE GENERALISED MODEL AND THE APPLICATION OF
STANDARD DUALITY THEORY IN LOCATION.

The typical Von Thiinen problem can be characterised in the following way:
max{F(a(r) b, w) = max{f(x a(rkb): glx.a@hbow) <O} s (1)
or by a dual to (1) as:
minG(a(r)b,w) = minfe(xa(kbw): f(al)b)2 0 @)
where:
x is a vector of choice variables one of which will be fixed in location.

r isradial distance.

a is a vector of parameters, each of which is a function of distance in such a
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way that they are a centripetal force. That is, they make central locations
attractive.

b is a vector of non-location parameters.

w s the price of the location good and is an unknown function of distance. The
price of this good has been isolated from the other parameters in that it will
act as a centrifugal force in competition for location. That is it will act as a
dispersive location force and will counteract the other location parameters.

The functions f and g could refer to production and cost if the issue is a
producer problem or utility and expenditure if the issue is a consumer problem.

In both cases it must be made clear that the distinction between the inner and
outer problem is a heuristic device to isolate the location issue from other aspects
of a production or consumption problem. The separation into the inner and outer
problem is attributable to Anas (1982). It does not indicate that the relevant
functions are separable as in say two stage budgeting and a separable utility
function, see Gorman (1959) and (1987) and Blackorby et al (1978, chapter 3). In
this sense space is not to be treated in the same way as time in intertemporal
allocation, where say in the consumption model consumers allocate expenditure at
successive points in time. Each locator in the Von Thiinen model is regarded as
only taking up one location in radial distance from the central focal point.
Nevertheless, it is feasible to separate the problem as in (1) or (2) because at each
location the marginal rate of technical substitution (producer problem) or the
marginal rate of substitution (consumer problem) of the choice variables will be
independent of location.

However, adapting the nomenclature of intertemporal consumer theory, see
McLaren and Cooper (1987), the functions F and G, which are the optimal value
functions for the dual inner problems, will be referred to as aspatial, because the
problem of location has not been solved in the inner optimisation. When r is
optimised out of F and G the resulting optimal value functions will be referred to
as spatial functions F, and G, All optimal value functions where r is to be
determined, that is are still functions of r, are aspatial functions in the sense that
they evaluate an optimisation in which location has not been optimally chosen.
They are aspatial in the sense that spatial considerations have not been involved in
their optimisation.

3. THE BID RENT (OFFER PRICE) FOR THE LOCATION FIXED
GOOD.

Solutions to (1) or (2) are trivial at the moment and will lead to central location
until some structure is found for w in . Rather than impose this structure a priori,
Von Thiinen type models attempt to establish it through competitive bidding
within an equilibrium model. Essential to this is the formation of bid rent or offer
price as a function of radial distance for locators. A route to bid rent as a function
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of distance 7 is through the optimal value functions of (1) and (2).

Firstly, establish that the optimal value functions for the alternative inner
problems, F and G, are monotone functions of w and then invert them for w. For F
denote the inverse as:

a)(a(r),b,f) o 3)

and for G,

o(a(r)b,g) . (4)

The result (3) or (4) is a maximum value function, known as the bid rent
function, conditioned on levels in f or in g and is the maximum at any given
location r a locator can bid for units of the location good. This route to the bid rent
curve should be compared to that of Wheaton (1979, p.110), Sasaki (1987, p.55)
and Fujita (1989, p.14), in the Alonso type urban residential model. Using the
notation here, these works invert the function g for w in (1) and then pose the
problem:

a)(a(r),b,f)s mflx{w(x,a(r),b): f(x,a(r),b)z f} :

Returning to the method adopted here, it is useful to form the identities (5) or
(6) below, through substitution of (1) and (2) into (3) and (4) respectively. It is
then possible to employ envelope theorems to establish important first and second
order properties of the bid rent function from these identities:

a)(a(r), b, F(a(r),b,w)) =w ;and (5)

w“(a(r),b,G(a(r).b,w))=w . (6)

The identities in (5) and (6) make economic sense. If a firm or household has a
set of bid rents conditioned on for g and takes up a location, so that it transacts
over the location good, then by the definition of bid rent, the market price it pays
must be an element in its bid rent set.

Differentiating (5) with respect to w gives:

é’_a)(a(r),b,f) —_1 (7)

of OF dw

Now, using the envelope properties of the function F, say through Hotelling’s
lemma or Roy’s identity, identifies the denominator on the right hand side (or
some appropriate variation of it) as the demand for the location good (albeit
conditioned on w). For illustration here, it can be supposed that JF/Jw gives a
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relevant demand expression, say x" (a(r),b, w).

Now, however, inspection of (7) shows that, in this case, demand can be
retrieved as:

x/ (a(r),b,f) = : (8)

The importance of (8) is that it asserts that a relevant demand, such as the
demand for land, retrieved in this way will be a function of the arguments of @ and
therefore will be conditioned on fand abstracted from own-price. This opens up
the prospect of signing the derivatives of the demand for the location good with
respect to its arguments (conditioned on f) even if, in the conventional own-price
conditional functions, there may be ambiguities. Whether this prospect can be
realised will depend upon the structure of the optimal value function from which @
is obtained by inversion. It might seem unusual that the demand for land derived
from the bid rent function is conditioned on levels of the functions F or G and
abstracted from own-price. Moreover, because they are highly conditioned, such
demand functions may be of limited empirical use. Nevertheless, they will serve a
useful function in that they can be used to analyse the relationship between the
demand for the location good and radial distance r. Particularly, abstracting from
own-price effects on demand allows concentration on the effects of parameters a
on the demand in radial distance. Additionally, and most importantly from an
empirical point of view, tests of any demand hypothesis in radial distance may
need to be conducted under conditions in which the “own-price” is not available.
These alternative conditional functions hold out attractive possibilities for
different empirical specifications.

Continuing, the remainder of the first derivative properties of @ in its other
arguments can now be examined by straightforward differentiation and
substitution. That is for example, take any parameter a, which is an element of a,
and any parameter b, an element of b, and differentiate @ with respect to these
parameters.

Properties 1 (further first derivative properties of @)

o dF da

e ; and

lda OF /0w
c?_a)__é’F ob
b OFJow’

This route should be compared to say Sasaki (1987, p.55). He uses the first
order conditions to the problem of choosing x to maximise @, subject to a level in
/. to establish the first order properties of .
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A similar procedure, but using the envelope properties of G, through say
Shephard’s lemma, establishes the envelope properties of @”. The demand for the
location good can be retrieved through the envelope properties of @ . Again, this
will be conditioned on levels in g and abstracted from own-price.

With respect to the second order properties of @, the discussion following (8)
shows clearly that the signs of the first and second derivatives of @ or @ are
determined by the characteristics of the functions F or G. The first derivative signs
are straightforward. The second derivative signs depend on the curvature
characteristics of the function F or G, because the functions @ and " are
expressions for the level curves of F and G. The function @ is convex if F is quasi-
convex in a and b and w is the expression for the lower contour function, that is @
is decreasing in levels of . The function @’ is convex if G is quasi-concave in a
and b and " is the expression for the upper contour function, that is @” is
increasing in the levels of g (Diewert, 1982 and Cornes, 1992).

Next, it is necessary to establish the curvature properties of w or @” in r. With
minimum qualification this can be done when the functlons a(r) play an
exclusively centripetal role. In this case, using the fact that @ or o are expressions
for the lower or upper contour functions of F or G, so that determining the
curvature characteristics of  or G and that F' or G are decreasing or increasing
functions of w and a(r), establishes the curvature properties of @ or @ in r.
Alternatively, one can use the first and second derivative properties of @ and &” to
establish their curvature characteristics, but again these are ultimately determined
by the first and second derivative properties of  and G. When a(r) plays an
exclusively centripetal role @ and " are monotone decreasing convex functions of
r

4. THE STRUCTURE OF MARKET RENT FOR THE LOCATION GOOD
IN DISTANCE.

Now one may use (3) or (4) in competitive bidding to establish that market
price, w(r) is a monotone decreasing continuous convex function. This is
determined by the fact that w is supported from below (competitive bidding) by a
family of convex functions @ or ”. It must be made clear however, that when w is
supported from below by a family of bid rent functions differentiated by their
degree of slope in r, the convexity of those bid rent functions is sufficient, but not
necessary, for the convexity of w. This observation needs to be elaborated upon in
order to allow for the empirically plausible case where not all the parameters a(r)
play a centripetal role or, alternatively, where the conditioning variables of the w
function are, unlike f'and g, not able to be directly linked in such a way as to infer
convexity (resp. quasi-concavity) of @ in a if @ is decreasing (resp. increasing) in
the conditioning variable. To handle the more general situation of potential non-
convexity (perhaps even concavity) of @ in r, it is helpful to introduce the general
notion of F convexity. A careful examination of the definition of generalised F
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convexity' (see Avriel er al, (1988), pp.294-295) will reveal that convexity of the
support functions is not a necessary condition for the decreasing F convexity of the
function w(r).

Definition 1 (after Avriel, et al, op. cit.)

w(r) is a real function on the set S where S R, .

w is F convex on the set S if for every r° €S there is a function a)(r) such
that:

w(ro) = co(ro) and w(r)2o(r) Vres .

Thus, a land or built space rent function which is a monotone decreasing F
convex function of radial distance could even be derived from a family of concave
bid rent curves as long as:

1. the bid rent curves are monotone decreasing in r; and
2. there is complete non-coincidence of the slopes of the family of support

functions, so that w(ro) = (a(ro) and w(r)>o(r), VreS, rp#r.

Whether or not an F convex market rent function defined in this way is in fact
convex in the standard sense does not depend on the curvature properties of the
support function (although convexity of these would be sufficient). In general, it
would be an empirical matter whether convexity applied. The point needs to be
made though, that the convexity or otherwise of conditional market rent functions
(such as the f and g conditional functions which are used here for illustration)
depend upon the characteristics of the “parent” optimal value functions from
which they have been derived, as well as upon the characteristics of the distance
parameter functions a(r).

Another important point that needs to be made here is the continuity properties
of the market rent function for the location good derived in this way. If there is
complete non-coincidence of each locator’s bid rent function, then the market rent
function will consist of a locus of points which is the highest bid of a locator at
that point and optimal locations for each locator will be unique. This case is
clearly envisaged by Alonso (1960) and (1964) in his residential model, where
market rent is a smooth continuous function of distance. Alternatively, if the
market rent function is supported from below by families of bid rent functions,
where within classes of locators there is complete coincidence of bid rent, and
between classes of locators there is complete non-coincidence of bid rent, then the
market rent function will be a piecewise smooth continuous function. This is

' Wherever upper case F appears in plain print it refers to the general notion of “F
convexity” and should not be confused with italicised upper case F, which always refers to
the aspatial optimal value function of problem (1).
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normally the case with the Von Thiinen agricultural model where a class of
locators will be a specific agricultural product type (Livesey, 1984). This is echoed
in Fujita (1989), who elegantly derives a piecewise smooth continuous residential
land market rent function with homogeneity within residential classes and
complete heterogeneity between residential classes, where class differentiation
could be determined by income, household size, tastes etc.. Under these conditions
whilst an optimal location might exist for a locator, that optimal location will not
be unique, but will be part of an interval of optimal radial locations which will
form concentric neighbourhoods in location.

5. OPTIMAL LOCATION.

If one were to continue in the tradition of the Von Thiinen problem, the next
logical step, having established the characteristics of the market rent function w(r),
would be to substitute the market rent function into the optimal value functions for
the inner problems of (1) and (2) to give a clear specification of the outer
problems:

F.(b)= max{F(a(r),b,w(r))} - and 9)

G, (b) = mrin{G(a(r),b,w(r))} - (10)

The existence of a solution to (9) or (10) turns on the fact that one must
establish that the functions F or G are continuous in » and that the domains of F or
G are compact sets of ». The former is determined by the continuity of F or G in a
and w and the continuity of a and w in r. The latter is determined by two boundary
conditions. Firstly, the inner boundary is guaranteed by the fact that » must be non-
negative so that the inner boundary is ¥=0. The outer boundary from the central
place is more problematical. One has to appeal to the idea that there must be some
finite number that marks the outer limit to location, » = 7, that is, radial distance
cannot go on forever. Assuming differentiability and interior solutions, the first
order conditions to (9) and (10) are:

OF da OF dw
L (11)
Jda' dr aw dr

oG da oG dw
et (12)
oa’ dr ow dr

These conditions both indicate that optimal location relative to the central place
is determined by a balance between centripetal forces (left hand side of (11) and
(12)) and the centrifugal force of location good price (right hand side of (11) and
(12)). Equations (11) and (12) are general cases of the so called access space trade-
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off forces in location, and through the use of Hotelling’s lemma or Roy’s identity
and Shephard’s lemma, generalise the classic Muth equation of the urban
residential model (Muth, 1971; p.23, equation (3”) and Turnbull, 1995, p.10,
equation (2.5)).

6. DUAL PROBLEMS IN OPTIMAL LOCATION.

An interesting alternative to this approach would be to exploit further the
insights of duality theory by considering the choice of » under conditions which
are logically equivalent but which require consideration of alternative
optimisations to the outer problems (9) and (10). Consider, for example, dual
problems to (9) or (10), which may be represented as:

R(b.f)=min{ r e R, :0(a(r).b, )= w(r)= 0} ; (13)
R(b, /)= max{ r R, :0(a(r).b, f)-w(r) 2 0} : and (14)
RY(b,g)=min{ r €%, :0°(a(r).b,g) - w(r) 20} ; (15)
R%(b,g)=max{ r €%, :0"(a(r).b,g) - w(r) 2 0} . (16)

These give the closest or furthest distance, r, from the central focal point of the
Von Thiinen system that the entity can locate. The optimal value functions of
problems (13) to (16) are useful in location problems where optimal locations form
an interval of radial distances, which are the classic concentric zones of the
circular Von Thiinen type model. Comparative statics on the radial extent of these
concentric zones can be undertaken through the envelope properties of the optimal
value functions of (13) to (16).

Figure 1 illustrates problems (13) and (14) for a homogeneous class of locators:
such as the producers of a specific crop in the traditional agrarian problem; a class
of households (say of the same income and tastes), as in the urban residential
problem; or a specific industry for urban industrial location.

In Figure 1, o(f,r) is a bid rent function for the homogeneous class of locators
and that group face a market rent function w(r). The shading in the figure shows
the feasible set of bids for the problems in (13) and (14). That is, the set of
distance/bid price co-ordinates where the difference between bid rent and market
rent is non-negative. The solution to problem (13) is ' and that for (14) is r°.

The optimal value functions of problems (13) to (16) are spatial functions
because r has been optimised. The envelope properties of these functions can be
explored by utilising the envelope properties of previous functions. For example,
this can be done by forming an identity by substituting the aspatial function £ from
(9) into (13):
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afr)

0 rp r

Figure 1. The Optimal Set of Locations in Minimising Rents.

R(b. F(a(r).b,w(r))) =7 . (17)

To interpret this identity, note that the aspatial function F contains the market
rent function as its argument. The optimal distance is found where bid rent equals
market rent, and the R function conditioned on optimal bid rent (for a given r)

clearly returns the same r as optimal.
Differentiating this identity with respect to » gives:

IR _ ! . "
of OF da OF dw e
oa' dr Jow dr

where the denominator of the right hand side indicates the fundamental centripetal
and centrifugal forces of location in the Von Thiinen location model.
Differentiating the same identity with respect to b gives:

GR_ OROF

== S id 19
SN hE (19)
utilising (18) and (19), gives:
oF
R____ &b
ob " OF da OF dw
cda' dr ow dr

The gradient vector & F'//é'b on the right hand side is known from the envelope
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properties of the function F. The sign of (18) is crucial in determining locational
comparative statics. Given the nature of problems (13) to (16) then:

Proposition 2
When not equal to zero, J R/Af (or & RY/Fg) is of opposite sign to

A R/Af (or 6 R%Jog).

However, it is possible to go further than this proposition. Recalling the first
order conditions (11) or (12), then for small perturbations around optimal locations
such as ' and #’ of Figure 1 the sign of (18) will be known. In this way
comparative statics utilising (19) are feasible.

7. THE DEMAND FOR THE LOCATION GOOD AND LOCATION.

Finally, the demand for the location good can be examined by retrieving the
relevant demand, via the envelope theorem, from the aspatial functions F, G, @ or
@”. These demand functions will be functions of radial distance r and their
relationship with » can be examined by differentiation.

However, recall that demand for the location good retrieved from o or o° are
conditioned on levels in F or G and are abstracted from own-price. This will allow
some decomposition into the various effects on demand over radial distance. For
example, take the demand retrieved from the function ® and the function F. One
element in the vector x will refer to location good. Call this x. Then the two
relevant demand functions are:

.

=
=
—

a(r).b.w(r)) ; and (20)

7 — ez e N 1)

The function (20) is the unconditional demand from the function F and is a
function of own-price, hence the superscript w. The function (21) is the conditional
demand from w(a(#), b, f) and because it is conditioned on f'it has been given the
superscript f.

Differentiating (20) with respect to r gives:

b7 _c'f’x“‘ @jjx“ dw
Ar oda dr Ow dr

(22)

Alternatively substituting the aspatial function F from (9) into (21) gives the
identity:

x” =x’ (a(r),b,F(a(r),b,w(r))) . (23)
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Differentiating (23) with respect to r gives:

Ox" Ox’ da Ox' OF da Ox' OF dw
=0 w e (24)
Or oJa' dr of da'dr Jf dw dr

Comparison of (22) and (24) suggests the following decomposition:

ox" _ox' ox'oF . Ox" Ox'OF
Jda dJda Of da’ w Of ow’

so that ambiguity in the term Ox" /Oa , if it arises, may be explained in terms of

the components made up of the conditional effect of a, a substitution like effect
and the “level” effect operating through F. Where effects remain ambiguous, there
is the option to make use of the previously discussed relationships between F and
dual functions such as R, in order to split up effects further into terms which may
be separately capable of unambiguous interpretation. This approach allows a clear
statement of what may or may not be deduced from theory and what must be left to
empirical examination in terms of the demand for a location fixed good and
location in a Von Thiinen type model.

8. SUMMARY.

Figure 2 summarises the application of duality to a generalised Von Thiinen
model.

Starting with the central box it is possible to retrieve demand functions for the
location good from the aspatial functions F or G. This is the upper central box in
Figure 2. Alternatively, if the structure of w(r) is known, choosing » to maximise
or minimise the relevant function F or G gives the spatial optimal value functions
F, or G,, the box on the left in the figure. The bid price functions @ or «”,
conditioned on levels for g, can be found by inversion of the aspatial functions F
or G. Conditional demand functions, conditioned on f or g, can be retrieved from
these functions. Alternatively, these maximum value functions can be obtained
from the problem of maximising offer price for the locational good conditioned on
levels in for g. The aspatial functions F and G can then be retrieved by inversion.

The functions @ or @ can be used to specify problems dual to the maximum or
minimum problems in F or G. These are choose r to minimise or maximise radial
distance from central place, subject to a market price constraint. The optimal value
functions to these problems are in the lowest central box in Figure 2. Substitution

- - =
of For Ginto R and R or _R(' and R gives the minimum (7 ) and maximum

(;) distances respectively. The envelope properties of these location functions, R,
form a useful route to location comparative statics. Conversely, substitution of
these maximum or minimum location functions, R, into the relevant aspatial
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functions F or G gives levels in these functions at the optimal location, that is F, or
G,. Finally, substitution of the relevant optimal value function R into the offer
price function @ or @ retrieves prices for the location good at maximum or
minimum distance conditioned on levels in for g.

This paper has outlined an application of duality theory to a general location
model. The result has been the development of dual functions beyond standard
duality theory with which to analyse location issues. The model is general enough
to be applied to problems of urban business location as well as urban residential
location and the fundamental rural problem of Von Thiinen. Future development of
the model could take place to capture specific models of regional location in
production, for example, an extension of the model to include centralising
(“backwash effects™) and decentralising forces (“spread effects”) between regions
of Hirschman (1988) and the regional centre/periphery model of Friedmann
(1972). A difficulty here is the specification of the decentralising or “spread”
forces. In the present general model these have been encapsulated through the
effect of competition for central location on prices of the location good. However,
the “spread effects” of regional models appear to be wider than this, including the
increasing real wages of central regions and the effect of congestion on production
and distribution cost, as well as the “spread” of economic development to
peripheral regions through increased trade with fast growing central regions. This
would require a clear development of the structure of these decentralising forces
across distance from central region and an incorporation of that structure into the
objective functions of and the constraints faced by producers in regional location.

x" = x(a(r),b,w r)) = xf(a(r),b,f)
x" = x(a r),b,W(r)) o xg(a(’”),b’g)
x A
deméand
R0, [22] [t ov0) ey
G (b)| [min] |G(a(r).b.w(r))[™
: inversion :

l t ] ¥ a)(a(r),b,f)

| e a)(’(a(r),b,g)
Rib.f), A7) | v

R°(b,g),R% (b, g)

Figure 2. The Dual Relations in the Generalised Von Thiinen Optimal Location Problem.
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