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ABSTRACT Economics-of-scale is an ubiquitous phenomena in real-world 
production processes. A common way to model economies-of-scale, e.g. in Location 
Theory models, is to assume that the production of a commodity entails fixed costs, F, and 
a constant marginal cost, c, so that the production costs of a plant are given by F + cq, 
where q = quantity produced. It is not obvious whether this function is a short- or a long-
run cost function. Elementary economic theory postulates that a short-run cost function 
should have an explicit capacity limit, and that there should be no fixed costs in the long 
run. In order to derive long-run equilibrium results the model builder, however, may feel 
more comfortable using an unambiguously long-run cost function. Such a function, which 
still possesses the desired properties of the cost function given above, is derived in the 
present paper. 

1. INTRODUCTION 

A fundamental point-of-departure in many spatial economic models is the 
trade-off between using economies-of-scale in the production and increases in 
transport costs. This trade-off arises because the average transport distance of the 
goods increases as increased output typically cannot be disposed of without 
increasing the market area size of the plant. Indeed, “ .. the tradeoff between 
increased transport costs and decreased production costs is the heart of spatial 
economics”, Arnott (1987, p. 429) in Palgrave, and the roots of this trade-off can 
be traced back at least to Adam Smith’s Wealth of Nations (1976, p. 1776), in 
which the third chapter of the first Book is entitled “The Extent of the Market is 
Limited by the Division of Labour”. This idea has in modern times been further 
developed and couched in both analytical and diagrammatical terms, see e.g. 
Lewis (1945, p. 204), Beckmann (1968, p. 45) and Mohring and Williamson 
(1969, p. 225). 

The presence of economies-of-scale characterizes many production processes 
in the real world, and it is therefore often a fruitful model assumption. As 
recognized by Eaton and Lipsey (1976, p. 77), an affine function - that is, a 
function f (x) = ax (which, thus, passes through the origin) plus an intercept, see 
e.g. Hands (1991, p. 112) - is a convenient, and commonly-used, functional form 
for production costs of a plant in spatial economic model building: 

TC = TC(q) = F + c⋅q (1) 

where 
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Figure 1. The Cubic Long-Run Total Production Cost Function. 

 
TC = Total production costs 
F   = Fixed costs 
c   = marginal cost 
q   = quantity produced 

It is not obvious whether (1) is a short- or a long-run cost function. 
Elementary economic theory postulates that a short-run cost function should 
have an explicit capacity limit, and that there are no fixed costs in the long run. 
In order to derive long-run equilibrium results, however, the model builder may 
feel more comfortable using an unambiguously long-run cost function. The 
purpose of this paper is to develop such a function, one that still possesses the 
required properties of cost function (1). 

Section 2 reviews a few characteristics of the textbook cubic cost function, 
which are illustrated by some scattered empirical evidence shown in Section 3. 
What functional form is appropriate for the empirical data as well as for cost 
functions in general is the subject of Section 4. The main section of the paper is 
Section 5, in which an affine long-run production cost function is algebraically 
derived. Concluding remarks are given in Section 6. 

2. THE TEXTBOOK CUBIC LONG-RUN PRODUCTION COST 
FUNCTION  

The textbook cubic Long-Run Total Production Cost (LRTPC) function, 
shown in Figure 1, is very simple. It is non-linear, and postulates that there are 
no fixed costs in the long run.  

For illustration purposes the production volume range in Figure 1 has been 
divided into three segments. In Segment I the LRTPC rises degressively, in 
Segment II the LRTPC rises by and large proportionally, and in Segment III the 
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LRTPC rises progressively with output. Thus, in Segment III diseconomies-of-
scale is present. The graph in Figure 1 is a theoretical construction. Section 3 
offers some empirical results. 

3. SOME SCATTERED EMPIRICAL OBSERVATIONS 

Production and cost data on plant level are often considered confidential 
information, and therefore virtually no private firm is willing to reveal it. A few 
cost functions have, nevertheless, been estimated in the present project. The 
selection of firms was not made at random, but was influenced by which firms 
were willing to offer the necessary data. Thus, the empirical evidence given in 
this section serves only to illustrate some actual, although not necessarily 
representative, cost and production volume relationships.  

The research approach used in this project can be illustrated by the way in 
which the estimation of a production cost function in the Swedish single-plant 
bakery industry was obtained. 

A dozen single-bakery firms in Sweden were identified using sources such as 
Web sites on the Internet, and the Federation of Swedish Industries. A letter of 
introduction was sent to each of these bakeries; this letter was followed shortly 
by a personal telephone call. The only question posed to bakery staff concerned 
the bakery’s yearly production volume in tons. Most of the firms were willing to 
give out this single piece of information. The annual financial reports of the 
bakeries in question - from which production costs can be inferred - were 
ordered from the Swedish Patent and Registration Office (PRV). (Every Swedish 
company must submit its annual financial reports as public documents to PRV). 
In this way total production and total cost data for nine bakeries were obtained.  

Production- and cost data were obtained in a quite similar manner for six hair 
salons, seven driving schools, eight oil depots, and 48 Primary Health Centers 
(PHC) – the latter were grouped into three categories – inner-city, suburban, and 
rural PHCs. All of these data sets, added with straight line fits, are plotted in 
seven figures; Figure 2 to Figure 8 (note, 1 AUD ≈ 5 SEK).  

The observations in the figures, respectively, are quite few in number. Still, 
mere visual inspection of the figures indicates that affine functions approximate 
the cost and output observations of this particular sample reasonably well, which 
may serve as an argument for using cost functions like the one in (1). There is 
more to consider, however. 
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Figure 2. Production and Costs for Nine Swedish Bakeries in 1999. 
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Figure 3. Production and Costs for Six Swedish Hair Salons in 1999. 
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Figure 4. Production and Costs for Seven Swedish Driving Schools in 1999. 
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Figure 5. Production and Costs for Eight Swedish Petrol Depots in 1996. 
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Figure 6. Production and Costs for 14 Swedish Inner-city Primary Health 

Centres in 1995 
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Figure 7. Production and Costs for 20 Swedish Suburban Primary Health 

Centres in 1995 
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Figure 8. Production and Costs for 12 Swedish Rural Primary Health Centres in 

1995. 

4. WHICH FUNCTIONAL FORM IS APPROPRIATE?  

Two observations can be made in Figures 2-8. First, there is an upper limit for 
the output volume of a production facility. Indeed, with the exception of the 
large petrol depot in the upper right corner of Figure 5, output volumes of the 
largest production facility generally is no more than three or four times larger 
than the smallest. Second, very small output volumes are rare. 

Firms seldom operate plants in Segment III, as it generally pays in such cases 
to split the production into two separate plants. Therefore, the researcher will 
seldom find observations in the very large output volume Segment III. 
Furthermore, as pointed out by e.g. Miller (1977, pp. 79-80), once a plant is built 
it is seldom operated at very small production volumes relative to the set-up 
costs involved. This is because firms running such plants most often would be 
out-competed by firms operating plants at higher production volumes and, thus, 
at lower average costs. Therefore, very small output volume observations rarely 
are found in empirical cross section data. What the researcher often does find are 
Segment II observations.  

It is furthermore interesting to note that the data in Figures 2-8 can be said to 
lie, by and large, on straight lines. In the figures, graphs are fitted to the data and 
extrapolated downward to zero output volumes and upward to varied output 
volumes. It is perfectly possible, however, to imagine the presence of 
observations in Segments I and III of Figures 5-8 in such a pattern that these will 
approximately fit into the basic cubic LRTPC function. With the exception of 
left-most observation, the same holds true for the data sets in Figure 3 and 4, 
respectively. The data structure is less obvious in Figure 2. 
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Thus, it is not obvious from the Segment II observations of Figures 2-8 what 
kind of cost function – an affine, a cubic, or some other – is relevant over the 
output range 0 to ∞. Furthermore, it is typically not possible to fit cubic long-run 
cost functions with the observations at hand. In the next section, however, an 
affine cost function is derived, that may be regarded as long- run, as the fixed 
costs can be disposed of. 

5. THE AFFINE LONG-RUN TOTAL PRODUCTION COST FUNCTION 
DERIVED 

In this section the task is to develop a long-run cost function that can be 
squared into Segment II of the cubic function in Figure 1 without explicitly 
violating the shapes of Segments I and III. The function should also be 
reconcilable with the functional form of (1), in order to conform with established 
spatial economic model building. 

It seems unsatisfactory to assume a constant-elastic cost function. Sooner or 
later constant returns-to-scale is likely to set in – it would have some odd 
consequences in a spatial context to assume that the average cost is falling 
forever. Within the range of actual observations in Figures 2-8 it is found that a 
linear function with a positive abscissa fits the data quite well. This does not, of 
course, mean that the shape of a LRTPC function like (1) above applies in the 
whole output range - from zero onwards. It is here assumed that this shape 
applies only within the output range where q is larger than some threshold 
quantity (of, say, q0). Such a truncated, linear LRTPC function can be derived 
from very reasonable underlying characteristics of capacity costs and short-run 
operating costs. As will be demonstrated presently, the chosen cost function is 
also defined in the initial output range, in which q < q0. For reasons that will 
soon be clear, this output range will rarely be relevant, however. In order to 
derive a long-run cost function that possesses the desired properties, the 
following should be assumed: 
(i) The capacity cost per unit of capacity is falling with the increase in capacity, 

a fact that is empirically well documented, see e.g. Haldi and Whitcomb 
(1967, p. 383). 

(ii) The operating unit cost is falling with the increase in capacity, which is also 
well documented – big plants are typically labour-saving, see e.g. Pratten, 
1971, pp. 4-5. 
Convenient forms of the total capacity cost and the total operating cost that 

take these characteristics into account are: 

Total capacity cost = c1 + a1K (2) 

Total operating cost = (
K
c2  + a2)q (3) 

where 
K = capacity ≥ q 
q = volume of output 
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and a1, a2, c2 are constants > 0, c1 ≥ 0  
As the capacity gets very large, the capacity unit cost will approach the 

constant a1, and the operating unit cost will approach the constant a2. The 
constant c1 in (2) may appear to be a half-measure - just a reduced counterpart of 
the fixed costs in (1) - and (c2/K + a2) may appear to be an unnecessarily 
involved expression for the marginal cost. However, these extensions do have 
some bearing on the real world that should be taken into account. Take, for 
example, a patent on an efficient production technology for a particular product. 
The patent may be sold by its holder, and therefore represents an opportunity 
cost. This motivates the inclusion of the capacity-independent constant c1 ≥ 0 in 
(2). As for the operating costs, it has been long observed that marginal 
production costs tend to decline with increases in plant size - that is, capacity. 
This motivates the inclusion of c2/K in (3). 

Combining the capacity cost funtion and the short-run operating cost 
function, the capacity variable K can be eliminated, and the Long-Run Total 
Production Cost can be expressed as a function of just volume of output (q) by 
minimizing the total cost for every level of output, observing that q ≤ K. Form 
the Lagrangian expression L: 

L = c1 + a1K + (
K
c2  + a2)q - λ(K-q) (4) 

and find the Kuhn-Tucker conditions for minimum total costs: 

K
L

∂
∂  = a1 - ( 2

2

K
c )q - λ ≥ 0 (5) 

K
K
L

∂
∂  = 0 (6) 

λ∂
∂L  = K - q ≥ 0 (7) 

λ
λ∂
∂L  = 0 (8) 

 
The capacity constraint can be binding or not binding. Where it is binding (q 

= K > 0) λ takes a positive value, and from (5) it can be concluded that q > c2/a1. 
If K > q, it follows from (7) and (8) that λ = 0. The capacity can now be found 
from (5):  
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Figure 9. Short- and Long-Run Total Production Cost Functions. 
 

K = 
1

2

a
qc , in the range where q < c2/a1 (9) 

By substitution of (9) and K = q, respectively, in (2) + (3), it is evident that 
the LRTPC-function, consists of two parts: 

* LRTPC = qaqcac 2211 2 ++ , for q < 
1

2

a
c

 (10a) 

* LRTPC = ( )qaacc 2121 +++ , for q > 
1

2

a
c

 (10b) 

The cost functions (10a) and (10b) are illustrated in Figure 9 in which a 
family of Short-Run Total Production Cost (SRTPC) curves are tangent to the 
(dashed part of the) long-run curve up to the q0 = c2/a1 production volume. The 
dashed part of the LRTPC function in Figure 9 is the graphical counterpart to the 
function (10a), whereas the heavy straight line for production volumes larger 
than c2/a1 is the counterpart to (10b). 

Note that the SRTPC-curves in Figure 9 stop at the capacity limits. This 
occurs initially to the right of the point of tangency of the SRTPC- and LRTPC-
curves, but the discrepancy diminishes as the SRTPC-curves flatten. Eventually 
the tangency point coincides with the production capacity limit – at q0 = c2/a1. In 
the range where q < c2/a1, installing capacity that is larger than necessary for the 
planned volume of output is optimal, see e.g. Cheenery (1953, pp. 320-321). 
This can be justified by the operating cost savings realised by a larger capacity. 
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As explained previously, it is not necessary - either in the theoretical 
modelling or in the empirical studies - to take into consideration what shape the 
cost function may take where q < c2/a1. Instead, the assumption is now made that 
the only “relevant range” is the one to the right of c2/a1. That is, where:  

q > q0 = 
1

2

a
c

 (11) 

Thus, only the second part of LRTPC (denoted TPC from now on) will be 
considered. It is apparent that, given the units of measurement of output, the 
economies-of-plant size will be more pronounced the higher the ratio of: 

21

21

aa
cc

+
+

 (12) 

will be. This ratio is given a designation of its own, namely b. If, in addition, 
(a1+a2) is put together and denoted a, (12) may be written: 

b = 
a

cc 21 +  (13) 

and, consequently: 

ab = (c1 + c2) (14) 

Now (10b) can be written: 

TPC = ab + aq, q > q0 (15) 

and the (long-run) Average Production Cost (APC) is written: 

APC = 
q
aba +  (16) 

which is a cost function of the kind sought-after in this paper. 

6. CONCLUDING REMARKS 

Function (15) is similar to cost functions frequently used in spatial economics 
- that is, equation (1). It is worth stressing, however, that (10b) and (15) are only 
defined for q > q0, and that ab should not be literally interpreted as the fixed 
costs. The “long-run fixed costs” are c1 ≥ 0, which are less than ab, and possibly 
zero. Thus, the cost function in (15) is a cost function that is different from cost 
functions like that of (1). Nevertheless, the cost function developed in Section 5 
is not only a new cost function, but may also serve as justification for a careful 
use of cost functions of the kind: TPC = F + c⋅q in spatial economics long-run 
equilibrium modelling.  

Furthermore, (16) shows that as output volume goes to infinity, average 
production cost approaches a, but can never be below a, no matter how large the 
output volume is. Therefore, a, the marginal cost, can serve as a convenient 
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proxy for the unit-value. This an advantage of the present cost function 
compared to e.g. homogeneous production functions with a scale-elasticity 
greater than unity, in which there is no limit to the fall in APC as the output 
volume increases (in such a case the concept of unit-value becomes quite 
ambiguous). In Wall (2001) it is argued that the standard Location Theory model 
- which typically includes: 
• fixed costs or some indicator of the degree economies-of-scale in the 

production 
• the transport costs per unit distance of the product in question 
• the density of demand  
as independent variables in explaining density of plants or market area size – 
benefits from the inclusion of the unit-value of the product as a fourth 
explanatory variable. It is shown in Wall (2001) how the present cost function 
(15) can be used in developing such a model. 
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