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ABSTRACT: Preparing local area population projections with state-of-the-art 

demographic models can be a challenging, time-consuming and costly task. 

Alternative simpler models can produce projections quickly and easily, but at the 

cost of less output detail, less flexibility in creating scenarios, and sometimes 

lower accuracy. This paper presents an evaluation of a new modelling approach 

which blends the conceptual sophistication of state-of-the-art cohort-component 

models with the low data requirements of simple models. A key feature is that no 

locally-specific fertility, mortality, or migration input data is necessary. The new 

model is tested by producing ‘projections’ of local government area populations 

by age and sex in Tasmania over recent periods, with the results then compared to 

actual populations. The model is shown to produce reasonably accurate 

projections, and out-perform a simple benchmark model. The strengths and 

weaknesses of the new approach are discussed. 
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1. INTRODUCTION 

 

   The preparation of local area population projections is usually a 

challenging, complex, and time-consuming task. In situations where there 
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are several hundred local areas, it can take a small team several months to 

complete. The input data requirements are substantial and will often 

necessitate the purchase of customised data tables; unavailable data may 

have to be indirectly estimated; and smoothing must be applied to ragged 

age patterns of fertility, mortality and migration to obtain the underlying 

demographic rates. There are no standard and easy ways of formulating 

assumptions about the future of local area fertility, mortality, and 

migration. The coding of the projection model calculations, or the use of 

an existing projections program, can be demanding. And the process of 

reviewing and fine-tuning projection outputs can take weeks. 

   Yet even with all the time, effort and resources which are normally 

dedicated to the task, projections for many areas often deviate substantially 

from the actual populations measured years later. Several studies have 

demonstrated how local area population projections can be highly 

erroneous even just a few years into the future, with the smallest 

populations experiencing the greatest errors (Rayer and Smith, 2010; 

Statistics New Zealand, 2008; Wilson et al., 2018). In a study analysing 30 

years of past local area population projections in Australia, median 

absolute forecast errors of the total population were found to be 2.8% after 

5 years and 5.4% after 10 years (Wilson et al., 2018). But the wide error 

distribution means that 5% of local areas experienced errors above 14.2% 

after 5 years and above 23.5% after 10 years. 

   Given that local area population projections are widely used for various 

planning and policy purposes, and can influence multi-million dollar 

decisions, it would be useful if they could achieve levels of accuracy that 

are within a few percent of the actual populations. Ideally, the projections 

would have lower errors than in the past, and with a narrower error 

distribution, i.e., where the highest errors are not so high. At the same time, 

it would be very helpful if the process of preparing the projections could 

be simplified and shortened. Unfortunately, it is usually the case that the 

more sophisticated projection models for producing age-sex projections, 

like the multiregional cohort-component model (Rogers, 1995), are 

complex, data-intensive, and time-consuming to implement. Simpler 

models, like the Hamilton-Perry model (Hamilton and Perry, 1962; Smith 

et al., 2013), are data-light, easy to use, and quick to implement, but offer 

only basic outputs and can yield less accurate projections (Wilson, 2016). 

The Hamilton-Perry model projects populations by age and sex by 

assuming recent ratios of cohort populations at two points in time continue 

into the future. It is described in section 2 below. 

   This paper presents an evaluation of a new approach to preparing local 

area population projections. This employs a conceptually robust projection 
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model which requires relatively little input data. The new approach 

incorporates a simplified bi-regional cohort-component model (Rogers, 

1976; Wilson and Bell, 2004), but does not need any local area migration, 

fertility, or mortality input data to be gathered, and requires little in the way 

of assumption-setting (Wilson, 2022). Instead, it uses synthetic migration 

data derived from model migration age schedules and local area net 

migration age patterns. This synthetic migration cohort-component model 

has been previously tested by applying it to Statistical Area Level 3 (SA3) 

areas of Australia (which have populations mostly in the range of 30,000 

to 130,000). Those evaluations demonstrated its ability to produce 

reasonably accurate projections over a 15 year projection horizon, 

achieving greater accuracy than the Hamilton-Perry model. Significantly, 

the whole projections process took only a few days. 

   However, the new projection approach has not yet been tested on local 

government areas (LGAs), many of which are smaller in population than 

SA3 areas. Small populations are the most challenging to forecast because 

they are prone to sudden changes in demographic trends, and data for these 

areas are sparse and noisy. In this paper, we report an evaluation of the 

model which involved producing ‘projections’ of LGA populations in 

Tasmania over past periods. Although we could have chosen any 

State/Territory, Tasmania provides a useful case study because many of its 

29 LGAs have very small populations which will ‘stress test’ the new 

model. The projections were then compared with actual populations and 

error measures were calculated. We also evaluated equivalent projections 

produced by the ‘competitor’ Hamilton-Perry model.  

   Following this introduction, the paper describes the data, projection 

models, and assessment methods employed (section 2), while the 

projection results are summarised in section 3. The strengths and 

weaknesses of the evaluated projection approaches, and the implications 

of the study’s findings for the practice of LGA population projections, are 

discussed in section 4. 

 

2. DATA AND METHODS 

 

Synthetic Migration Cohort-Component Model 

 

   The synthetic migration cohort-component model is a simplified bi-

regional cohort-component model (Wilson, 2022). It produces projections 

of local area populations by sex and five year age groups in five year time 

intervals and, to simplify its operation for users, has been programmed in 
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an Excel/VBA program with considerable amounts of automation. Figure 

1 summarises the process. For each local area, migration flows are 

modelled between that area and the rest of the world (the bi-regional aspect 

of the model). It projects two migration flows: inward migration (domestic 

in-migration plus immigration from overseas combined) and outward 

migration (domestic out-migration and emigration combined) by age and 

sex. Outward migration is projected using outward migration rates 

multiplied by local area populations-at-risk. Inward migration is projected 

directly as flows because the population-at-risk of inward migration is the 

rest of the world, which is not modelled. Births and deaths are handled in 

the usual way for a cohort-component model, with age-specific rates 

multiplied by populations-at-risk.  

   The model’s inward and outward synthetic migration flows are estimated 

over a recent 5 year base period using population accounts (Rees and 

Willekens, 1986). While the calculations are non-trivial, the whole 

estimation process is automated in the Excel/VBA program and is 

relatively simple for users of the program. Births and deaths must be 

calculated before migration can be estimated. Births by sex are used if the 

data are available, or estimated indirectly using age-specific fertility rates 

multiplied by the local female population-at-risk. The age-specific fertility 

rates are based on the local Total Fertility Rate, which is estimated 

indirectly from the population age-sex structure using the xTFR method of 

Hauer and Schmertmann (2020), and then disaggregated to age groups 

using a set of model age-specific fertility rates. This indirect estimation 

process allows the projection model to be applied in circumstances where 

fertility data are unavailable for the chosen geographical areas. 

   Deaths by age and sex are directly input if available, or estimated from 

age-specific death rates multiplied by the local population-at-risk if not. 

Death rates are estimated indirectly from local life expectancy at birth and 

a national mortality surface (Wilson, 2018). The national mortality surface 

consists of a set of model life tables covering a wide range of mortality 

conditions, enabling age-specific death rates to be calculated from the point 

on the mortality surface which corresponds to the estimated life expectancy 

at birth. Once base period births and deaths are known, the remaining 

population change over the five year base period can be attributed to net 

migration. 
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Figure 1. A Summary of the Projections Process Using the Synthetic 

Migration Cohort-Component Model. Source: the Authors. 

   

Synthetic migration flows are then estimated from three main inputs: 

a) a set of model migration rates by age and sex used for all areas; 

b) base period net migration for each local area by age and sex (just 

calculated); and  
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c) an estimated crude migration turnover rate for local areas, defined as 

total inward plus outward migration divided by the total population. 

This can be universal or area-specific.  

   Preliminary migration for the base period is obtained by multiplying the 

model migration rates by local area base period populations-at-risk for 

each age-sex group. Base period total migration turnover is estimated by 

multiplying the crude migration turnover rate by local area total 

populations-at-risk. The age-sex migration estimates are then scaled to 

match total migration turnover, and split evenly into separate inward and 

outward migration flows. The two flows are then differentiated by 

adjusting them proportionally to be consistent with base period total net 

migration. Finally, the two flows are adjusted by age and sex so that inward 

minus outward migration by age and sex matches the base period net 

migration age-sex values. It is important to note that these are not estimates 

of real migration flows; they are synthetic migration values with plausible 

age patterns which are consistent with base period net migration. 

   The cohort-component population projections are subject to two sets of 

constraints. The first is a set of independent projections of local area 

population totals. This is included because previous research has 

demonstrated that constraining small area age-sex projections to 

independent totals generally improves accuracy (Baker et al., 2021; 

Reinhold and Thomsen, 2015; Tayman et al., 2021; Wilson, 2016). The 

projection model adjusts inward and outward migration so that the cohort-

component calculations produce projections which match these 

independent total populations. The second constraint is a set of State 

population projections. It is generally good practice to ensure that local 

area projections are fully consistent with projections at higher geographies. 

Local area births by sex, deaths by age and sex, and net migration by age 

and sex are constrained to those of the State projections. With all the 

demographic components of change constrained, local area projected 

populations by age and sex are automatically consistent with those at the 

State level.  

 

Test Projection Assumptions 

 

   Two sets of historical test projections for Tasmania’s LGAs were 

produced using the synthetic migration model and the benchmark 

Hamilton-Perry model. They were: 

   (1) 2006-based projections out 10 years to 2016, and  

   (2) 2012-based projections out 5 years to 2017.  
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   These jump-off years were selected because they are the same as those 

of ABS population projections (Australian Bureau of Statistics [ABS], 

2008, 2013a) and thereby enable the use of the Australian Bureau of 

Statistics (ABS) projections for Tasmania as constraints. 

   Fertility assumptions were specified in the form of Total Fertility Rates 

(TFRs). In the synthetic migration model Excel/VBA program, TFRs for 

the base period are estimated indirectly (Hauer and Schmertmann, 2020). 

For the test projections, it was assumed that these TFRs would remain 

unchanged into the future. 

   Mortality assumptions were formulated in terms of male and female life 

expectancy at birth. Although it involves some approximation, the simplest 

option is to assume all areas experience the same life expectancies as the 

State as a whole, which was the chosen approach in this case. The life 

expectancy assumptions for Tasmania from the ABS population 

projections were used. Age-specific death rates were calculated from the 

assumed life expectancies using the mortality surface of past and projected 

national life tables. 

   Migration turnover assumptions were estimated from census migration 

data. One year interval out-migration from each LGA to anywhere else in 

Australia, in-migration to each LGA, and immigration from overseas, were 

obtained. Emigration was assumed to be half the value of immigration. 

These migration flows were then used to estimate approximate crude 

migration turnover rates for each area. Although there are several 

conceptual and empirical approximations in this approach, the model has 

been shown to be insensitive to the values of the crude migration turnover 

rate (Wilson, 2022), so approximate estimates are sufficient. 

 

Population Projections Used as Constraints 

 

   The State population projection constraints consisted of the ABS 2006-

based and 2012-based Series B population projections (ABS, 2008, 

2013a). Fortunately, the “re-casting” of Estimated Resident Populations 

(ERPs) made by the ABS following the 2011 Census, in which ERPs 

between 1991 and 2011 were revised, involved only small revisions being 

made to Tasmania’s population in 2006 (ABS, 2013b). The recast 2006 

ERP was judged sufficiently close to the old ERP (which formed the jump-

off populations in the projections) to avoid the need for the ABS 

projections to be adjusted to be consistent with the recast 2006 ERPs. 

   Local area total population constraints were prepared by a simple 

Linear/Exponential model (LIN/EXP) based on population change over the 

10 year period up to the jump-off year. In this model, populations are 
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projected using linear extrapolation (LIN) if population change over the 

last decade has been positive, and exponential extrapolation (EXP) if it has 

been negative. It, therefore, avoids projecting extreme or implausible 

values (e.g. exponential growth applied to an area growing rapidly would 

give extremely high growth, while linear extrapolation applied to a rapidly 

declining population could result in zero population in the long run). The 

LIN/EXP extrapolations were constrained to sum across LGAs to the 

projected State total population from the ABS projections. 

 

The Hamilton-Perry Model 

 

   The Hamilton-Perry model (Hamilton and Perry, 1962) is a parsimonious 

projection model which produces population projections by age group and 

sex. In its most basic form, it requires only populations by age and sex at 

two points in time, usually 5 or 10 years apart (Smith et al., 2013). 

Projections are calculated using Cohort Change Ratios, which are defined 

as the ratio of a cohort at one point in time to its size 5 (or 10) years earlier. 

For example, the female population of a local area aged 50-54 in 2021 

divided by the population aged 45-49 in 2016 is the Cohort Change Ratio 

for the cohort which ages from 45-49 to 50-54 over the 2016-2021 interval. 

Projections are created by multiplying the current population by a Cohort 

Change Ratio, e.g. the female population aged 50-54 in 2026 is the 

population aged 45-49 in 2021 multiplied by the Cohort Change Ratio. The 

0-4 year old population is calculated via a Child/Woman Ratio, usually 

defined as the 0-4 year old population divided by the female population 

aged 15-49. More details about the Hamilton-Perry model are available in 

Baker et al. (2017) and Smith et al. (2013). 

   The Hamilton-Perry model, with various refinements and extensions, has 

enjoyed a resurgence in recent years, particularly in the United States 

(Baker et al., 2017; Baker et al., 2021; Hauer, 2019; Swanson et al., 2010; 

Tayman et al., 2021; Wilson and Grossman, 2022). In the implementation 

of the Hamilton-Perry used for this study, projections were subject to the 

same two sets of constraints as the synthetic migration model: projected 

LGA population totals from the LIN/EXP model, and ABS age-sex 

projections for Tasmania.  

 

Forecast Error Measures 

 

   The test projections were compared to ERPs prepared by the ABS (ABS, 

2021a, 2021b) using two main error measures. Projected total populations 
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produced by the extrapolative model were evaluated using Absolute 

Percentage Error (APE). It is defined as: 

𝐴𝑃𝐸 =
|𝐹−𝐴|

𝐴
 100  

where F = forecast and A = actual population. Mean and median values 

across all LGAs are reported. 

   The error in a local area’s projected age-sex populations was measured 

by a modified APE measure (Wilson, 2022). The APEage-sex summarises in 

a single metric the error across all age-sex projected populations for a local 

area, and is calculated as: 

𝐴𝑃𝐸𝑎𝑔𝑒−𝑠𝑒𝑥 =
∑ ∑ |𝐹𝑠,𝑎−𝐴𝑠,𝑎|𝑎𝑠

𝐴
 100  

where s= sex and a = age group. When viewing projected and actual 

populations in a population pyramid, the numerator is the difference in area 

between the projected population age-sex structure and the actual age-sex 

structure. The APEage-sex, therefore, highlights errors in a population’s 

projected age-sex structure even when the total population is projected 

accurately. Effectively, APEage-sex is a population-weighted mean of all 

individual age-sex APEs for a local area. Mean and median values of 

APEage-sex across all LGAs are reported. 

   Judging what level of error is acceptable to users is difficult because it is 

likely to vary depending on each specific use of the projections. 

Nonetheless, for this paper we consider errors of APE and APEage-sex under 

2.5% to be excellent, 2.5-5% to be good, 5-10% acceptable, and over 10% 

as poor. Given that forecast error generally increases as population size 

decreases (Tayman, 2011), we expected the age-sex projections to be more 

erroneous than population totals. 

 

3. RESULTS 

 

Projected Population Totals 

 

   Forecast errors of projected LGA population totals from the extrapolative 

LIN/EXP model are summarised in Table 1. The table presents Absolute 

Percentage Errors (APEs) of LGA populations out 5 and 10 years from 

2006 and out 5 years from 2012. Average error values are given at the 

bottom of the table. The median APEs for the 2006-based projections were 

1.8% after 5 years and 3.7% after 10 years, while the median APE for the 

2012-based projections was 2.6%. Compared to local area population 

projections in Australia generally, these projections are relatively accurate. 

Previously calculated median APEs for local area total populations in 
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Australia for projections prepared from the 1980s to the 2010s are 2.8% 

after 5 years and 5.4% after 10 years (Wilson et al., 2018). 
 

Table 1. Absolute Percentage Errors of Projected Population Totals from 

the LIN/EXP Extrapolative Model, 2006- and 2012-Based Projections. 

Source: the Authors. 

 2006-based 2012-based 

LGA 5 years ahead 10 years ahead 5 years ahead 

Break O’Day 2.4 11.9 6.9 

Brighton 2.2 1.7 1.5 

Burnie 0.4 5.6 5.3 

Central Coast 1.6 2.9 3.4 

Central Highlands 3.5 1.8 6.8 

Circular Head 0.4 3.2 3.0 

Clarence 1.6 3.9 2.7 

Derwent Valley 1.9 2.8 0.2 

Devonport 1.1 2.9 2.8 

Dorset 2.3 9.2 2.7 

Flinders 8.3 9.4 17.5 

George Town 0.5 0.4 0.6 

Glamorgan-Spring Bay 3.8 7.4 1.6 

Glenorchy 1.7 3.5 2.6 

Hobart 1.5 2.4 2.3 

Huon Valley 3.1 2.0 0.3 

Kentish 0.1 7.4 6.1 

King Island 2.5 2.2 2.1 

Kingborough 2.4 1.0 0.8 

Latrobe 4.8 3.4 0.9 

Launceston 0.6 2.7 2.0 

Meander Valley 4.0 10.9 2.2 

Northern Midlands 3.9 6.5 1.2 

Sorell 2.0 3.0 1.1 

Southern Midlands 1.8 5.3 5.7 

Tasma 0.1 6.4 4.2 

Waratah-Wynyard  1.0 3.8 3.5 

West Coast 0.7 6.3 5.4 

West Tamar 1.5 6.2 0.5 

Median APE 1.8 3.5 2.6 

Mean APE 2.1 4.7 3.3 

  

  As is usually the case for population projections, the test LGA population 

projections became less accurate the further they extended into the future. 

For the 2006-based projections, the total population projections 5 years out 
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were either excellent or good (under 5% APE) for 28 out of 29 LGAs 

(97%), while at 10 years out projections for only 17 out of 29 LGAs (59%) 

achieved the same level of accuracy. Two LGAs, Break O’ Day and 

Meander Valley, experienced projections 10 years out which were more 

than 10% too high (classified as poor quality). In the 2012-based 

projections, 22 out of 29 LGAs (76%) had total population projections in 

the excellent or good categories. 

 

Projected Age-Sex Populations 

 

   Errors in the projections of LGA age-sex populations, as measured by 

APEage-sex, are shown in Table 2. Given the commonly observed negative 

relationship between error and population size, it is not surprising to find 

that errors for age-sex-specific populations are higher than those for total 

populations. Average errors of the synthetic model’s projections of age-

sex-specific populations are moderately lower than those of the Hamilton-

Perry model. The median APEage-sex for the synthetic model’s 2006-based 

projections is 5.2% after 5 years (compared to 6.4% for the Hamilton-Perry 

model) and 7.7% after 10 years (compared to 9.8%). For the 2012-based 

projections, the median APEage-sex out 5 years is 5.7% for the synthetic 

model compared to 6.3% for the Hamilton-Perry.  

   Figure 2 provides an illustration of an average level of accuracy in the 

age-sex projections generated by the synthetic model. It shows the 

projected population of West Tamar LGA in 2016 (shaded bars), along 

with the 2016 ERPs (solid black lines) and the jump-off ERPs of 2006 

(dashed lines). The projection has been reasonably successful in predicting 

the extent of population ageing, though it has over-projected the childhood 

age populations (due to errors in both births and net migration) and adult 

populations in the 30s and 40s age groups. Thus, the broad age-sex 

structure of this population has been projected moderately well 10 years 

ahead, but errors for some individual age groups are quite high. 

   In terms of the classification of error values for the age-sex projections, 

none were excellent and only a minority were good. In the 2006-based 

projections, the number of LGAs whose age-sex projections can be 

classified as good was 10 after 5 years, and 3 after 10 years. The equivalent 

number of LGAs from the Hamilton-Perry projections were 6 and 0. 

Fortunately, the majority of LGA projections achieved APEage-sex values 

under 10%, placing them in the good or acceptable categories. In the 2012-

based projections, the synthetic model generated good age-sex projections 

for 12 LGAs, while the Hamilton-Perry managed good projections for 10 

LGAs. A further 13 LGAs from both the synthetic and Hamilton-Perry 
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projections fell in the acceptable category, ensuring that the majority of 

LGA age-sex projections were at least acceptable. 

 

 

Figure 2. The Age-Sex Structure of the Population of West Tamar in 2016 

as Projected by the Synthetic Migration Model. Source: ABS; the Authors. 

 

   The age-sex population forecast error generated by both models has a 

fairly strong association with the error of the extrapolative projected 

population totals. For the synthetic model, R = 0.65 for the 2006-based 

projections out 5 years and 0.58 out 10 years, while R = 0.81 for the 2012-

based projections out 5 years. As would be expected, it is generally the 

case that the better the independent total population projection, the better 

the age-sex projection. 

   Table 2 shows that the worst projections of age-sex populations from the 

synthetic model (with values of APEage-sex consistently above 10%) were 

obtained for Flinders, Tasman, and King Island. These are the LGAs with 

the smallest populations in Tasmania, and their populations are subject to 

the largest random fluctuations in demographic rates. In fact, when 

considering all LGAs in the State there is a clear association between 

APEage-sex and the logarithm of total population (not shown), a finding 

common to many other local area forecast evaluation studies (Smith, 1987; 

Tayman, 1996; Wilson et al., 2018). Equivalent errors from Hamilton-

Perry model for all three small LGAs were higher. 
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Table 2. APEage-sex of Population Age-Sex Projections From the Synthetic 

Migration and Hamilton-Perry Models, 2006- and 2012-Based Projections. 
Source: the Authors.  

 2006-based  2012-based 

 5 years ahead  10 years ahead  5 years ahead 

LGA Synth H-P  Synth H-P  Synth H-P 

Break O’Day 7.9 9.0  16.2 17.5  8.9 10.4 

Brighton 5.1 6.7  7.3 9.8  4.5 4.5 

Burnie 3.5 4.1  7.4 7.6  6.0 6.6 

Central Coast 4.4 5.3  6.6 7.8  5.6 5.7 

Central Highlands 11.9 14.4  14.0 18.0  15.2 14.8 

Circular Head 4.5 5.8  7.9 10.4  6.4 6.3 

Clarence 2.9 3.1  4.3 5.0  3.5 3.7 

Derwent Valley 5.2 6.5  7.6 10.2  5.8 6.3 

Devonport 3.7 4.1  6.6 8.0  4.6 4.2 

Dorset 6.8 6.4  11.2 11.2  5.6 6.8 

Flinders 34.8 41.6  26.1 34.4  22.5 29.0 

George Town 5.0 5.7  7.5 9.7  7.7 7.7 

Glamorgan-Spring Bay 9.2 11.2  11.5 16.7  7.1 9.4 

Glenorchy 4.9 5.3  7.3 7.6  3.7 4.4 

Hobart 4.8 5.4  6.6 7.6  3.4 4.0 

Huon Valley 5.6 6.4  7.2 6.9  5.0 5.3 

Kentish 7.6 7.0  11.7 12.9  9.0 9.2 

King Island 13.7 16.6  16.0 20.1  13.8 14.2 

Kingborough 4.4 4.9  4.3 6.0  3.3 3.5 

Latrobe 5.9 6.5  9.2 9.9  6.3 6.4 

Launceston 2.7 3.3  4.6 5.4  3.5 3.2 

Meander Valley 5.7 6.1  11.4 11.1  4.2 5.0 

Northern Midlands 6.2 7.2  9.6 9.4  4.7 4.7 

Sorell 5.1 7.4  7.2 9.6  4.9 5.4 

Southern Midlands 6.4 8.7  10.9 13.3  8.2 9.3 

Tasma 15.6 19.0  18.8 26.4  9.9 13.5 

Waratah-Wynyard  5.1 5.6  6.2 8.4  5.7 5.9 

West Coast 6.5 8.4  12.0 14.9  12.6 13.9 

West Tamar 3.9 4.7  7.7 7.6  4.7 4.8 

Median APEage-sex 5.2 6.4  7.7 9.8  5.7 6.3 

Mean APEage-sex 7.2 8.5  9.8 11.8  7.1 7.9 
Note: Synth = synthetic migration cohort-component model; H-P = Hamilton-Perry model 

      

   The two influences of total population size and error in the separate 

projections of the total population together account for much of the 

variation in age-sex population forecast error. Multiple linear regression 

shows that the logarithm of total population size at the jump-off year and 

the APE in the LIN/EXP projections of the total population are able to 

predict APEage-sex fairly well. Summary regression outputs are shown in 

Table 3. For the synthetic model, the adjusted R2 values are 0.71 and 0.84 

for the 2006-based projections out 5 years and 10 years, respectively, and 
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0.91 for the 2012-based projections out 5 years. The Shapley 

decomposition (Shapley, 1953) indicates that the natural log of the jump-

off population contributes most to the R-squared. 

 

Table 3. Modelling the Value of APEage-sex from the Synthetic Migration 

Model. Source: the Authors.  

Variable Coefficient Standard error p value % contribution†  

After 5 years      

2006-based      

Intercept 36.37 6.35 5.02E-06   

Ln(jump-off population) -3.49 0.64 1.08E-05 61  

Total APE 1.49 0.39 0.00076 39  

Adjusted R-squared 0.71     

No. observations 29     

2012-based      

Intercept 28.41 2.80 1.56E-10   

Ln(jump-off population) -2.49 0.28 2.32E-09 57  

Total APE 0.58 0.09 8.08E-07 43  

Adjusted R-squared 0.91     

No. observations 29     

After 10 years      

2006-based      

Intercept 39.18 3.64 4.57E-11   

Ln(jump-off population) -3.45 0.37 7.47E-10 74  

Total APE 0.55 0.13 0.00021 26  

Adjusted R-squared 0.84     

No. observations 29     
Note: Ln(jump-off population) = natural logarithm of total population size at the jump-off year; Total 

APE = the APE in the LIN/EXP projections of the total population. † Shapley decomposition of the 
adjusted R-squared, with the standardised Shapley value reported. 

 

4. DISCUSSION AND CONCLUSIONS 

 

   The results of the test projections reveal the synthetic migration cohort-

component model to be capable of producing reasonable projections of 

Tasmania’s LGA populations by age and sex up to a decade ahead. And 

this was achieved using the simplest approach to formulating assumptions 

about the future of fertility, mortality and migration turnover. The synthetic 

migration model proved moderately more accurate than the Hamilton-

Perry model. These findings supplement previous work which has shown 

that the synthetic model produces reasonable projections for SA3 areas and 

with lower errors than alternative simple cohort models (Wilson, 2022). Of 

course, reasonable model performance in the past is not an absolute 
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guarantee of reasonable performance in the future. But it at least suggests 

that it is possible. 

   We argue that the synthetic migration model is a useful addition to the 

population forecasting toolbox for preparing local area projections. This is 

for several reasons: 

1) it requires relatively little input data, much of which is freely available 

from the ABS website (e.g. local area ERPs by sex and five year age 

group) 

2) projections can be prepared easily and quickly using the freely 

available Excel/VBA projection program 

3) it produces local area population projections by sex and five year age 

group which are consistent with independent State-level projections 

4) it outputs projected local area births, deaths and net migration 

5) assumption-setting is relatively simple; assumptions are prepared in 

terms of the TFR, life expectancy at birth, the crude migration 

turnover rate, and projected population totals 

6) the model is conceptually strong, being based on the directional 

migration bi-regional cohort-component model 

7) it has been shown to produce more accurate projections than the 

simple Hamilton-Perry model in this evaluation study and others 

(Wilson, 2022). 

   In summary, the model offers a lot for relatively little effort and cost: the 

projections output quality and detail are high in relation to the sum of all 

the required inputs (demographic data inputs, time needed, staffing, level 

of expertise, project costs, etc.). 

   The model could be useful for preparing local area projections where 

projected populations in five year age groups in five year time intervals are 

sufficient for stakeholders. It can handle various types of local area 

geography, including LGAs, SA3 areas, and SA2 areas, although the 

smaller the population, the more challenging the projections become due 

to noisy data. The model may also prove useful in circumstances where the 

resources available for producing local area projections are very limited, 

or where they have to be prepared very quickly. Furthermore, the model 

could also play a role as a validation tool to compare results with those of 

a more complex and detailed projection system. 

   However, several limitations of this model should be noted. Internal and 

overseas migration are not handled separately, and so separate internal and 

overseas projection assumptions cannot be prepared, and separate outputs 

are not available. Inward migration is projected directly as a migration 

flow, and not as a rate multiplied by a population-at-risk. The synthetic 

inward and outward migration flows are not accurate estimates of actual 
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inward and outward migration in themselves. They comprise migration 

flows with plausible age patterns which are consistent with the base period 

net migration values. They cannot be interpreted as robust projections of 

directional migration. In addition, the calculation of net migration as a 

residual in the base period to act as a constraint on the inward and outward 

migration flows means that the synthetic migration values depend on the 

accuracy of the base period ERPs by age and sex. 

   Furthermore, like all population projection models, demographic trends 

are likely to vary from the assumed trajectories to some extent. In 

particular, the assumption of base period outward migration rates and 

inward migration age patterns (though not levels) remaining unchanged 

will prove unrealistic in areas undergoing major changes in terms of 

housing type and socio-economic composition. Errors at the local area 

scale may be higher than many users expect, or at least higher than they 

find easy to handle in their decision-making. Examining how past 

projections have turned out can therefore be a useful guide to the 

approximate magnitude of error that can be expected in the future. As this 

study has demonstrated, projections for areas with the smallest populations 

are likely to be the least accurate. For populations under about 5,000 

people, we would recommend that projections are accompanied by a 

warning that they are highly error-prone. 

   The synthetic migration model cannot offer the same sophistication and 

detail of a multiregional or bi-regional cohort-component model with 

single year of age detail and a distinction between overseas, interstate, and 

intra-state migration flows. This more complex type of model offers the 

greatest flexibility in assumption-setting and projection output detail. But 

it requires a lot more input data, much more effort in data preparation and 

assumption-setting, greater expertise in projection methodology, more data 

validation, and more cost and time in total. Where this is not possible, the 

synthetic migration cohort-component model offers a good alternative. 

 

Projection Program 

 

The Excel/VBA implementation of the synthetic migration cohort-

component model is available for download at 

https://doi.org/10.6084/m9.figshare.19372784.v1. 

 

 

 

 

https://doi.org/10.6084/m9.figshare.19372784.v1


Evaluation of a New Simplified Population Projection Model:             71 

a Case Study of Local Government Area Projections in Tasmania 
 

 

REFERENCES 

 

Australian Bureau of Statistics (2008). TABLE B9. Population 

projections, By age and sex, Australia - Series B.  Online version 

accessed March 2022, 

https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3222

.02006%20to%202101?OpenDocument. 

Australian Bureau of Statistics (2013a). TABLE B9. Population 

projections, By age and sex, Australia - Series B.  Online version 

accessed March 2022, 

https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3222

.02012%20(base)%20to%202101?OpenDocument. 

Australian Bureau of Statistics (2013b). Feature Article 2: Recasting 20 

Years of ERP. Online version accessed March 2022, 

https://www.abs.gov.au/ausstats/abs@.nsf/Products/3101.0~Dec

+2012~Feature+Article~Recasting+20+Years+of+ERP+(Feature

+Article)?OpenDocument. 

Australian Bureau of Statistics (2021a). Regional population.  Online 

version accessed March 2022, 

https://www.abs.gov.au/statistics/people/population/regional-

population/2019-20. 

Australian Bureau of Statistics (2021b). Regional population by age and 

sex. Online version accessed March 2022, 

https://www.abs.gov.au/statistics/people/population/regional-

population-age-and-sex/2020. 

Baker, J., Swanson, D. and Tayman, J. (2021). The Accuracy of 

Hamilton–Perry Population Projections for Census Tracts in the 

United States. Population Research and Policy Review, 40, pp. 

1341-1354. 

Baker, J., Swanson, D. A., Tayman, J. and Tedrow, L. M. (2017). Cohort 

Change Ratios and their Applications, Springer International 

Publishing, Cham. 

Hamilton, C. H. and Perry, J. (1962). A short method for projecting 

population by age from one decennial census to another. Social 

Forces, 41, pp. 163-170.  

Hauer, M. E. (2019). Population projections for U.S. counties by age, sex, 

and race controlled to shared socioeconomic pathway. Scientific 

Data, 6, pp. 1-15.  

Hauer, M. E. and Schmertmann, C. P. (2020). Population pyramids yield 

accurate estimates of total fertility rates. Demography, 57, pp. 

221-241.  

https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3222.02006%20to%202101?OpenDocument
https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3222.02006%20to%202101?OpenDocument
https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3222.02012%20(base)%20to%202101?OpenDocument
https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/3222.02012%20(base)%20to%202101?OpenDocument
https://www.abs.gov.au/ausstats/abs@.nsf/Products/3101.0~Dec+2012~Feature+Article~Recasting+20+Years+of+ERP+(Feature+Article)?OpenDocument
https://www.abs.gov.au/ausstats/abs@.nsf/Products/3101.0~Dec+2012~Feature+Article~Recasting+20+Years+of+ERP+(Feature+Article)?OpenDocument
https://www.abs.gov.au/ausstats/abs@.nsf/Products/3101.0~Dec+2012~Feature+Article~Recasting+20+Years+of+ERP+(Feature+Article)?OpenDocument
https://www.abs.gov.au/statistics/people/population/regional-population/2019-20
https://www.abs.gov.au/statistics/people/population/regional-population/2019-20
https://www.abs.gov.au/statistics/people/population/regional-population-age-and-sex/2020
https://www.abs.gov.au/statistics/people/population/regional-population-age-and-sex/2020


72                                                                            Wilson and Grossman 

Rayer, S. and Smith, S. K. (2010). Factors Affecting the Accuracy of 

Subcounty Population Forecasts. Journal of Planning Education 

and Research, 30, pp. 147-161. 

Rees, P. and Willekens, F. (1986). Data and accounts. In A. Rogers and 

F. Willekens (Eds) Migration and settlement: A multiregional 

comparative study, D. Reidel, Dordrecht. 

Reinhold, M. and Thomsen, S. L. (2015). Subnational Population 

Projections by Age: An Evaluation of Combined Forecast 

Techniques. Population Research and Policy Review, 34, pp. 

593-613.  

Rogers, A. (1976). Shrinking large-scale population-projection models by 

aggregation and decomposition. Environment and Planning A, 8, 

pp. 515-541.  

Rogers, A. (1995). Multiregional Demography: Principles, Methods and 

Extensions, Chichester, New York.  

Shapley, L.S. (1953). A Value for n-person Games. In H.W. Kuhn and A. 

W. Tucker (Eds) Contributions to the Theory of Games, 

Princeton University Press, New Jersey.  

Smith, S. K. (1987). Tests of forecast accuracy and bias for county 

population projections. Journal of the American Statistical 

Association, 82, pp. 991-1003.  

Smith, S. K., Tayman, J., and Swanson, D. A. (2013). A Practitioner’s 

Guide to State and Local Population Projections, Springer, 
Dordrecht. 

Statistics New Zealand (2008). How accurate are population 

projections? An evaluation of Statistics New Zealand population 

projections, 1991-2006, Statistics New Zealand, Wellington.  

Swanson, D. A., Schlottmann, A. and Schmidt, B. (2010). Forecasting the 

population of census tracts by age and sex: An example of the 

Hamilton-Perry method in action. Population Research and 

Policy Review, 29, pp. 47-63.  

Tayman, J. (1996). The accuracy of small-area population forecasts based 

on a spatial interaction land-use modeling system. Journal of the 

American Planning Association, 62, pp. 85-98.  

Tayman, J. (2011). Assessing uncertainty in small area forecasts: State of 

the practice and implementation strategy. Population Research 

and Policy Review, 30, pp. 781-800. 

Tayman, J., Swanson, D. A. and Baker, J. (2021). Using Synthetic 

Adjustments and Controlling to Improve County Population 

Forecasts from the Hamilton–Perry Method. Population 

Research and Policy Review, 40, pp. 1355-1383. 



Evaluation of a New Simplified Population Projection Model:             73 

a Case Study of Local Government Area Projections in Tasmania 
 

 

Wilson, T. (2016). Evaluation of alternative cohort-component models 

for local area population forecasts. Population Research and 

Policy Review, 35, pp. 241-261. 

Wilson, T. (2022). Preparing local area population forecasts using a bi-

regional cohort-component model without the need for local 

migration data. Demographic Research, 46, pp. 919-956. 

Wilson, T. and Bell, M. (2004). Comparative empirical evaluations of 

internal migration models in subnational population projections. 

Journal of Population Research, 21, pp. 127-160.  

Wilson, T., Brokensha, H., Rowe, F. and Simpson, L. (2018). Insights 

from the evaluation of past local area population forecasts. 

Population Research and Policy Review, 37, pp. 137-155. 

Wilson, T. and Grossman I. (2022). Evaluating alternative 

implementations of the Hamilton-Perry model for small area 

population forecasts: the case of Australia. Spatial Demography, 

10, pp 1-31. 

 


